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In this paper we study two formulation reductions for the quadratic assignment problem (QAP). In

particular we apply these reductions to the well known Adams and Johnson [2] integer linear

programming formulation of the QAP. We analyze two cases: In the first case, we study the effect of

constraint reduction. In the second case, we study the effect of variable reduction in the case of a sparse

cost matrix. Computational experiments with a set of 30 QAPLIB instances, which range from 12 to 32

locations, are presented. The proposed reductions turned out to be very effective.

& 2010 Elsevier Ltd. All rights reserved.

1. Introduction

The quadratic assignment problem (QAP) was first proposed
by Koopmans and Beckmann in 1957 as a mathematical model
related to the location of a set of indivisible economical activities
[23]. Consider the problem of assigning n facilities to n locations
in such a way that each facility is designated to exactly one
location and vice-versa. The objective is to minimize the quadratic
interaction cost, a function of the distances and flows between the
facilities, plus the costs associated with allocating a facility to a
certain location. Therefore, given three n�n matrices with real
elements F=(fik), D=(djl) and C=(cij), where fik is the flow between
the facility i and facility k, djl is the distance between the location j

and l, and cij is the cost of allocating facility i at location j, the QAP
can be stated as follows:

min
xAX

Xn

i;j;k;l ¼ 1

qijklxijxklþ
Xn

i;j ¼ 1

cijxij ð1:1Þ

where qijkl = fikdjl,

xij ¼
1 if facility i is assigned to location j

0 otherwise

�

and X is the set of permutation matrices of dimension n.
This set of permutations can be defined as

X ¼ xj
Xn

j ¼ 1

xij ¼ 1; iAN

8<
: ð1:2Þ

Xn

i ¼ 1

xij ¼ 1; jAN ð1:3Þ

xijAf0;1g; i; jAN

)
ð1:4Þ

where N¼ f1; . . . ;ng.
Lawler [24] considered a more general QAP, where the qijkl

coefficients in (1.1) are not restricted to flow-distance products, in
contrast with the original Koopman–Beckmann formulation.

The QAP has drawn researcher’s attention worldwide and
extensive research has been done for more than half century. The
QAP problem is considered one of the most difficult combinatorial
problems: it is NP-hard, and even finding an e-approximate
solution is a hard problem [39]. It is surprising the number of
fields where the QAP problem can be applied. In addition to its
application in facility location, the QAP has been applied in many
fields such as printed circuit board assembly process [14],
typewriter keyboards and control panels design [36], scheduling
[18], numerical analysis [7], and many others. Moreover, many
well-known classical combinatorial optimization problems such
as the traveling salesman problem, the graph partitioning
problem, the maximum clique problem, can also be formulated
as special cases of the QAP, see [35] for details.

The advances in theoretical aspects, solution techniques and
applications of the QAP have been discussed in more detail, for
example, in [9,5,10,27]. Regarding recent QAP advances, it is
worth it to mention that during the last years some of the most
challenging QAP instances have been solved by combining parallel
branch-and-bound algorithms [28,12] with grid computing [4].

Calculation of lower bounds is an essential component of exact
QAP methods, which employ implicit enumeration in a branch
and bound framework, see [15,21,37]. On the other hand, lower
bounds are used to evaluate the quality of solutions produced by
heuristic algorithms, like simulated annealing algorithms [11,30],
genetic algorithms (GA) [3,13], greedy randomized adaptive
search procedure (GRASP) [26], ant colony algorithms [17], and
so on.
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Different QAP bounds have been proposed: Gilmore–Lawler
bound, eigenvalue bounds, quadratic programming bounds, LP
bounds, polyhedral bounds, semidefinite bounds, among others.
Very tight bounds are obtained with polyhedral methods, using
cutting plane algorithms [31,40], although a large amount of
computer time is needed to achieve those bounds. More details
about QAP lower bounds can be found in [41,1,25,6,20,42,32,33].

In this paper we have two main objectives. The first objective
is to study the effect of constraint reduction in (linear) integer
programming QAP formulations (IPQAP). In the second objective
we study the effect of variable and constraint reduction in the
case of some null flows (sparse flow matrix).

With the first objective in mind, we present a new LP bound for
the QAP, which is more effective than previous LP bounds. It is
known that LP and dual-LP bounds are tight for the QAP, but
appear to be computationally prohibitive in many cases [5]. To
develop the new LP bound, our starting point is the IPQAP
formulation of Adams and Johnson [2], that we name IPQAP-I.
Then, by virtually dividing by two the number of its constraints,
we propose an equivalent formulation, that we name IPQAP-II.
This new formulation is less tight than IPQAP-I, but its LP
relaxation can be solved much faster. The final result, is that
formulation IPQAP-II usually requires a B&B tree with more nodes
but more efficient in terms of total solving time.

Regarding the second objective, we have observed that quite a
lot of QAP instances have a sparse flow matrix. This fact had
already been observed by Padberg and Rijal [34] and also by
Kaibel [40], who refers some computational experiments by Elf
[29] showing that running times of a cutting plane algorithm for
the QAP are reduced substantially by exploiting sparsity of the
objective function. Here we study how to exploit zero flows in a
QAP instance which is to be solved by a commercial IP software.

The key point is that in presence of one single zero flow,
say fi0k0

, many coefficient costs qi0 jk0 l become also zero. We will
show how the associated variables yi0 jk0l can be eliminated in
the QAP formulation. We name IPQAP-III and IPQAP-IV this
reduced variable version of formulations IPQAP-II and IPQAP-I,
respectively.

In our numerical experiments, we have used a set of 30 QAPLIB
instances [8], that range from 12 to 32 locations, all of them with
a sparse flow matrix. The results obtained by the new formula-
tions have been surprisingly remarkable, especially, if we take
into account that we have conducted our tests with a standard
laptop, CPLEX 9.0 with default parameters and 4 h of CPU time
limit. Within these conditions and by using the IPQAP formula-
tions I, II, III and IV, we have solved up to optimality 2, 8, 15 and
17 QAPLIB instances, respectively.

This paper is organized as follows. In Section 2, we review
the Adams and Johnson QAP linearization. In Section 3 we study
the constraint reduction. In Sections 4 and 5, we study some
variable reductions, especially in the case of some null flows
(sparse flow matrix). The numerical experiments are presented in
Section 6. Concluding remarks are made in the last section.

2. Adams and Johnson linearization

Adams and Johnson [2] linearization is the well-known linear
integer programming QAP formulation:

min
x;y

Xn

i;j;k;l ¼ 1

qijkl yijklþ
Xn

i;j ¼ 1

cijxij ð2:1Þ

s:t:
Xn

l ¼ 1

yijkl ¼ xij; i; j; kAN ð2:2Þ

Xn

k ¼ 1

yijkl ¼ xij; i; j; lAN ð2:3Þ

yijkl ¼ yklij; i; j; k; lAN ð2:4Þ

yijklAf0;1g; i; j; k; lAN ð2:5Þ

xAX ð2:6Þ

This formulation, that we name IPQAP-I, contains o(n4)
variables and o(n4) constraints. Although, it produces tight LP
bounds, usually it poses an obstacle for efficiently solving QAP
instances from medium to large scale. Even to solve the associated
LP relaxation can be difficult [38]. Other QAP linearizations can be
found in literature: Lawler’s linearization [19] as the first one,
Kaufmann and Broeckx’s linearization [22] has the smallest
number of variables and constraints and Frieze and Yadegar’s
linearization [16], among others.

3. Formulation reduction by constraint elimination

In this section we introduce the new formulation IPQAP-II,
which corresponds to formulation IPQAP-I without constraints
(2.3), and with half of the constraints (2.2) relaxed into the r
form, that is

min
x;y

Xn

i;j;k;l ¼ 1

qijkl yijklþ
Xn

i;j ¼ 1

cijxij ð3:1Þ

s:t:
Xn

l ¼ 1

yijkl ¼ xij; i; j; kAN; irk ð3:2Þ

Xn

l ¼ 1

yijklrxij; i; j; kAN; i4k ð3:3Þ

yijkl ¼ yklij; i; j; k; lAN ð3:4Þ

yijklAf0;1g; i; j; k; lAN ð3:5Þ

xAX ð3:6Þ

Proposition 3.1. IPQAP-II is a (valid) formulation for the QAP.

Proof. We consider the following equivalent formulation of the
QAP in the (x,y) space (we name it QAP0):

min
x;y

Xn

i;j;k;l ¼ 1

qijkl yijklþ
Xn

i;j ¼ 1

cijxij

s:t: xijxkl ¼ yijkl; i; j; k; lAN xAX

Let us name FQAP0 ; FI and FII the feasible sets of formulations

QAP0, IPQAP-I and IPQAP-II, respectively. To prove this proposition,

it is enough to prove that FQAP0 ¼ FII , since QAP0 and IPQAP-II have

the same objective function.

First, let us see that FQAP0 � FII . We know that QAP0 and IPQAP-I

are equivalent formulations and that IPQAP-II is a relaxation of

IPQAP-I. Therefore,

FQAP ¼ FI � FII

Second, let us see that FII � FQAP0 . We consider ðx; yÞAFII and will

prove that ðx; yÞAFQAP0 . Since xAX, it is enough to see that yijkl = xij

xkl for 1r i; j; k; lrn. Without loss of generality, we assume that

irk.
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