
Kernel search: A general heuristic for the multi-dimensional knapsack problem

Enrico Angelelli a, Renata Mansini b,�, M. Grazia Speranza a

a Department of Quantitative Methods, University of Brescia, Italy
b Department of Information Engineering, University of Brescia, Italy

a r t i c l e i n f o

Available online 6 February 2010

Keywords:

Multi-dimensional knapsack problem

Binary variables

Kernel search

Heuristics

a b s t r a c t

In this paper we apply the kernel search framework to the solution of the strongly NP-hard multi-

dimensional knapsack problem (MKP). Kernel search is a heuristic framework based on the

identification of a restricted set of promising items (kernel) and on the exact solution of ILP

sub-problems. Initially, the continuous relaxation of the MKP, solved on the complete set of available

items, is used to identify the initial kernel. Then, a sequence of ILP sub-problems are solved, where each

sub-problem is restricted to the present kernel and to a subset of other items. Each ILP sub-problem

may find better solutions with respect to the previous one and identify further items to insert into the

kernel. The kernel search was initially proposed to solve a complex portfolio optimization problem. In

this paper we show that the method has general key features that make it appropriate to solve other

combinatorial problems using binary variables to model the decisions to select or not items. We adapt

the kernel search to the solution of MKP and show that the method is very effective and efficient with

respect to known problem-specific approaches. Moreover, the best known values of some MKP

benchmark problems from the MIPLIB library have been improved.

& 2010 Elsevier Ltd. All rights reserved.

1. Introduction

The multi-dimensional knapsack problem (MKP) is a strongly
NP-hard combinatorial optimization problem arising in many
application contexts such as capital budgeting, cargo loading [15],
cutting stock problems [8] and asset-backed securitization [12].
In the last years the MKP turned out to be one of the favorite
playgrounds for experiments with heuristics and metaheuristics,
in particular tabu search and genetic algorithms (see Kellerer
et al. [11]).

A common interpretation of the model considers a set
N¼ f1; . . . ;ng of items and a set M¼ f1; . . . ;mg of resources with
availability ci, iAM. Each item j has a value pj and consumes
resource i at a rate wij. It is assumed that all pj, wij and ci are
non-negative integer values. More precisely, wij can be zero for
some i, j, as long as

P
iAMwijZ1 holds for all items jAN. The

problem is to find a subset of items such that their total value is
maximum while the total requirement for each resource i does
not exceed the availability ci.

The decision of selecting or not an item j is modeled by a
binary variable xj. The MKP can be formulated as follows:

MKPðNÞ z :¼ max
X

jAN

pjxj; ð1Þ

X

jAN

wijxjrci; iAM; ð2Þ

xjAf0;1g; jAN: ð3Þ

Several heuristics have been proposed to solve the MKP. These
include simulated annealing [6], tabu search [9,10], genetic
algorithms [4] and hybrid methods [16]. Some of them are
strongly problem-dependent. A minor change in the model would
require the re-design of the heuristic. Some others spend a large
part of the computational time examining solutions that are very
unlikely to be optimal or close to an optimal one. The method
Kernel Search described here is a general heuristic framework
which tries to overcome both these drawbacks.

The main idea of the Kernel Search is to obtain a solution, of
hopefully high quality, from a small set of promising items called
the kernel. The kernel is initially built using information provided
by the solution of the linear relaxation of the original problem.
Then, new promising items are identified and added to the kernel
by means of the solution of a sequence of small/moderate size ILP
sub-problems. One of the main issues addressed in this paper
concerns the size of the ILP sub-problems. This value should be
small enough to limit the computational time required to solve
each ILP sub-problem. At the same time it has to be large enough
to allow possibly correlated items to be jointly selected.

Although initially designed to solve a portfolio optimization
problem (see Angelelli et al. [1]), the Kernel Search has general key
features that make it applicable to other combinatorial problems
where binary variables are used to model the selection or rejection

ARTICLE IN PRESS

Contents lists available at ScienceDirect

journal homepage: www.elsevier.com/locate/caor

Computers & Operations Research

0305-0548/$ - see front matter & 2010 Elsevier Ltd. All rights reserved.

doi:10.1016/j.cor.2010.02.002

� Corresponding author.

E-mail addresses: angele@eco.unibs.it (E. Angelelli), rmansini@ing.unibs.it

(R. Mansini), speranza@eco.unibs.it (M. Grazia Speranza).

Computers & Operations Research 37 (2010) 2017–2026

www.elsevier.com/locate/caor
dx.doi.org/10.1016/j.cor.2010.02.002
mailto:angele@eco.unibs.it
mailto:rmansini@ing.unibs.it
mailto:rmansini@ing.unibs.it
mailto:speranza@eco.unibs.it


ARTICLE IN PRESS

of items. The portfolio optimization problem represents a combina-
torial problem extremely suitable for the Kernel Search since the
number of selected items (securities) in an optimal solution is quite
small independently of the initial size of the problem. On the
contrary, the MKP is a combinatorial problem far from being ideal
for the proposed method because of the possibly large number of
variables set to 1 in the optimal solution. Nevertheless, in this paper
we adapt the Kernel Search to the solution of the MKP and show
that the performance of the Kernel Search, compared to known
problem-specific approaches, on benchmark instances is extremely
good. We frequently reach the best known solutions and in a few
cases even improve them, whereas, on average, we solve the
instances in a much shorter computational time.

The idea of considering a problem of small/moderate size in order
to intensify the search only on a promising region of the solution
space is not new in the literature and has been used in different
problem-specific approaches (see references in Angelelli et al. [1]).
Solution approaches inspired by this idea were proposed for the
knapsack problems (KPs) where the core algorithm, initially
introduced for the classical 0–1 knapsack problem by Balas and
Zemel [2], is based on the idea of identifying a small subset of items
(called the core) around the critical item on which to solve a
restricted problem exactly. Along this idea, all the proposed methods
are mainly exact algorithms and need to exhaustively examine all the
possible cores. Pisinger [13] introduced an expanding method where

the size of the core problem is modified during the algorithm
execution. Gomes da Silva et al. [5] analyzed the core concept for the
bi-criteria KP, while, only recently, such concept has been extended to
the multi-dimensional knapsack problem by Puchinger et al. [14]. The
authors studied this new core concept extensively and provided an
interesting analysis on different efficiency measures for the MKP. The
results of their empirical analysis were used to develop new concepts
for solving the MKP using ILP-based and memetic algorithms.

The paper is organized as follows. Section 2 describes the
Kernel Search and the way it is adapted to the solution of the
MKP, whereas Section 3 is devoted to the computational results
on benchmark instances. Finally, conclusions and future devel-
opments are drawn.

2. Kernel Search

The Kernel Search was introduced in [1] and applied to the
solution of a portfolio optimization problem. In order to make the
paper self-contained, in this section we describe the main
structure of the Kernel Search, adapted to the solution of the
MKP. We recall that even if MKP is a pure ILP problem, the Kernel
Search as described in [1] refers to a more general MILP problem
containing binary variables modeling items selection as well as
other integer and continuous variables.

Table 1
Benchmark instances with n=250, m=5.

Problem BestVal Fixed-bucket-I(1) Fixed-bucket-I(0.2) Fixed-bucket-I(0.1)

Gap LP (%) Gap (%) Time (s) Gap LP (%) Gap (%) Time (s) Gap LP (%) Gap (%) Time (s)

250.5_1 59,312 0.219 0.000 53 0.219 0.000 9 0.297 0.078 36

250.5_2 61,472 0.255 0.000 135 0.255 0.000 82 0.272 0.016 24

250.5_3 62,130 0.208 0.000 13 0.208 0.000 8 0.208 0.000 4

250.5_4 59,463 0.193 0.000 755 0.193 0.000 119 0.244 0.050 60

250.5_5 58,951 0.216 0.000 312 0.216 0.000 89 0.216 0.000 15

250.5_6 60,077 0.269 0.000 327 0.294 0.025 205 0.295 0.027 48

250.5_7 60,414 0.185 0.000 208 0.214 0.030 84 0.231 0.046 67

250.5_8 61,472 0.270 0.000 204 0.299 0.029 150 0.299 0.029 70

250.5_9 61,885 0.238 0.000 65 0.238 0.000 27 0.238 0.000 18

250.5_10 58,959 0.155 0.000 20 0.155 0.000 7 0.155 0.000 3

Average 0.221 0.000 209 0.229 0.008 78 0.245 0.025 34

250.5_11 109,109 0.102 0.000 293 0.102 0.000 154 0.102 0.000 44

250.5_12 109,841 0.109 0.000 56 0.109 0.000 32 0.109 0.000 10

250.5_13 108,508 0.130 0.000 178 0.130 0.000 218 0.130 0.000 71

250.5_14 109,383 0.117 0.000 260 0.117 0.000 133 0.117 0.000 37

250.5_15 110,720 0.103 0.000 738 0.103 0.000 602 0.103 0.000 350

250.5_16 110,256 0.100 0.000 257 0.100 0.000 154 0.105 0.005 82

250.5_17 109,040 0.103 0.000 129 0.103 0.000 89 0.103 0.000 44

250.5_18 109,042 0.088 0.000 509 0.088 0.000 496 0.088 0.000 107

250.5_19 109,971 0.138 0.000 215 0.138 0.000 130 0.138 0.000 102

250.5_20 107,058 0.097 0.000 162 0.097 0.000 143 0.097 0.000 76

Average 0.109 0.000 280 0.109 0.000 215 0.109 0.000 92

250.5_21 149,665 0.067 0.000 135 0.067 0.000 141 0.067 0.000 152

250.5_22 155,944 0.090 0.000 87 0.090 0.000 86 0.090 0.000 66

250.5_23 149,334 0.067 0.000 157 0.067 0.000 212 0.067 0.000 139

250.5_24 152,130 0.075 0.000 92 0.075 0.000 102 0.075 0.000 59

250.5_25 150,353 0.077 0.000 138 0.077 0.000 146 0.077 0.000 87

250.5_26 150,045 0.058 0.000 10 0.058 0.000 8 0.058 0.000 7

250.5_27 148,607 0.061 0.000 7 0.061 0.000 4 0.061 0.000 4

250.5_28 149,782 0.083 0.000 173 0.083 0.000 286 0.083 0.000 115

250.5_29 155,075 0.087 0.000 47 0.087 0.000 23 0.087 0.000 17

250.5_30 154,668 0.097 0.000 149 0.097 0.000 148 0.097 0.000 84

Average 0.076 0.000 99 0.076 0.000 116 0.076 0.000 73

Tot. average 0.135 0.000 196 0.138 0.003 136 0.144 0.008 67

E. Angelelli et al. / Computers & Operations Research 37 (2010) 2017–20262018



Download English Version:

https://daneshyari.com/en/article/475815

Download Persian Version:

https://daneshyari.com/article/475815

Daneshyari.com

https://daneshyari.com/en/article/475815
https://daneshyari.com/article/475815
https://daneshyari.com

