
Iterated local search and very large neighborhoods for the parallel-machines
total tardiness problem

F. Della Croce a, T. Garaix a, A. Grosso b,�

a DAI, Politecnico di Torino, Italy
b Dip. di Informatica, Universit �a di Torino, Italy

a r t i c l e i n f o

Available online 23 October 2010

Keywords:

Scheduling

Tardiness

Parallel machines

Very large neighborhood

a b s t r a c t

We present computational results with a heuristic algorithm for the parallel machines total weighted

tardiness problem. The algorithm combines generalized pairwise interchange neighborhoods, dynasearch

optimization and a new machine-based neighborhood whose size is non-polynomial in the number of

machines. The computational results significantly improve over the current state of the art for this problem.

& 2010 Elsevier Ltd. All rights reserved.

1. Introduction

In the Pmj j
P

jwjTj problem a set of jobs N¼{1,2,y,n} is given,
with processing times pj, weights wj and due dates dj specified for
each jAN. The jobs are to be processed in a schedule S on a set
M¼{1,2,y,m} of identical parallel machines so that their completion
times Cj minimize the objective function

TðSÞ ¼
Xn

j ¼ 1

wjTj ¼
Xn

j ¼ 1

wjmaxfCj�dj,0g:

For m¼1 the problem reduces to the single-machine total tardiness
problem, that is well-studied and solved in both the exact and
heuristic frameworks—we refer to [4,11,13,14,5,7,8] for recent
developments.

The literature seems to be fairly limited for the problem with
parallel machines; the most recent references are [2,3,9,13,14] to
the authors’ knowledge.

Iterated Local Search (ILS, see [10] for a survey) is a local search
framework that can be seen as a tradeoff between the naive multistart
and complex metaheuristics. In multistart a local search driven
optimization starts several times (often a huge number of times)
from randomly generated initial solutions, in order to achieve a
wide exploration of the solutions set. In metaheuristics a number of
sophisticated devices (genetic crossover, short or long-term memory,
etc) are employed in order to escape poor local optima. In ILS the
search is simply restarted from a slightly perturbed version of the
best-known solution. With this type of restart, the starting point
of each local search is not completely random, and the perturbation –
called ‘‘kick’’ – aims at projecting the search ‘‘not too far’’ from

previously explored local optima, without completely loosing their
partially optimized structure.

Very Large Neighborhood Search (VLNS) denotes local search
methods that define and explore complex neighborhoods for combi-
natorial optimization problems; such neighborhoods are character-
ized by having an exponential number of neighbor solutions – with
respect to the problem size – but can be explored in polynomial time
by means of exact or heuristic procedures (see [1]).

ILS is often successfully coupled with VLNS, hence moving the
complexity of the search from the overall algorithm to the neighbor-
hood exploration. We refer to [5,7] for a successful application of such
a VLNS technique (called dynasearch) to the 1j j

P
wjTj problem.

Rodrigues et al. [13] proposed a simple and quite effective ILS
algorithm for the Pmj j

P
jwjTj problem, using a local search based

on pairwise interchange operators. That algorithm was tested on a
batch of 100 instances with n¼40,50 and m¼2,4 derived from
a subset of the 1j j

P
wjTj problem instances available in the

OR-library.1 Notice that, on that batch, the algorithm was able to
detect all but one optimal solutions.

This paper aims at defining an improved ILS algorithm for
Pmj j

P
jwjTj by incorporating VLNS techniques. Particularly, we

introduce a dynasearch optimization on each machine in the shop
and a new ‘‘Very Large’’ neighborhood whose size is non-polynomial
in the number of machines.

We illustrate the basic building blocks of the algorithm and
present computational experiments for assessing their effective-
ness in Section 2. The complete algorithm is described in Section 3,
where also the computational results are discussed. The proposed
ILS algorithm outperforms the ILS of [13] on instances with a
number of jobs n ranging from 40 to 300, and a number of machines

Contents lists available at ScienceDirect

journal homepage: www.elsevier.com/locate/caor

Computers & Operations Research

0305-0548/$ - see front matter & 2010 Elsevier Ltd. All rights reserved.

doi:10.1016/j.cor.2010.10.017

� Corresponding author.

E-mail address: grosso@di.unito.it (A. Grosso). 1 http://people.brunel.ac.uk/�mastjjb/jeb/info.html

Computers & Operations Research 39 (2012) 1213–1217

www.elsevier.com/locate/caor
dx.doi.org/10.1016/j.cor.2010.10.017
mailto:grosso@di.unito.it<!--AQ2-->
http://people.brunel.ac.uk/∼mastjjb/jeb/info.html
http://people.brunel.ac.uk/∼mastjjb/jeb/info.html
dx.doi.org/10.1016/j.cor.2010.10.017
dx.doi.org/10.1016/j.cor.2010.10.017

m ranging from 2 to 20. The advantage of the new algorithm grows
on instances with large m thanks to the new neighborhood.

2. The basic neighborhoods

2.1. Generalized pairwise interchanges

The well-known GPI operators work on a sequence of jobs s
producing a new sequence su. Let s¼ aipjo, with jobs i and j in
position k and l, respectively. The most common GPI operators are

(1) Swap aipjo-ajpio (p may be empty);
(2) Forward insertion aipjo-apjio;
(3) Backward insertion aipjo-ajipo;
(4) Twist aipjo-ajpio with p ¼ p reversed.

The implementation of such operators is straightforward in
single-machine sequencing problems with regular cost functions,
since the machine is never idle and the sequence s is the schedule.
The so-called GPI dynasearch neighborhood for single-machine
sequencing problems combines possibly many independent moves
of types (1)–(4); two moves are said to be independent if the pairs
of positions (k,l) and (p,q) on which they act are non-overlapping,
i.e maxfk,lgominfp,qg. In a single-machine environment with an
additive objective function the contributions of independent
moves combine additively, and the best set of independent moves
can be worked out by dynamic programming (see [5] for details). A
GPI dynasearch neighborhood exploration for an n jobs sequence
requires Oðn2Þ time with its best implementation (see [7]).

In parallel-machines environments, GPI operators can be
applied provided that a sequence s can be converted to a schedule.
Rodrigues et al. [13] proposed a simple yet quite effective ILS
algorithm for the Pmj j

P
jwjTj problem. The algorithm applies GPI

operators – limited to (1)–(3) in their implementation – on a
sequence of jobs; the schedule on parallel machines associated
with this sequence s¼ ðj1,j2, . . . ,jnÞ is computed from scratch by
means of the most natural dispatching rule: assign the next job in
the sequence to the earliest available machine. The neighborhood
exploration is performed with a first-improve strategy, and fre-
quent restarts are applied (one kick every five complete descents).

Whereas the basic GPI neighborhood can be easily adapted to
the parallel machines environment, this is not the case for the
GPI dynasearch neighborhood: since the job starting times are
determined by applying the dispatching rule, the contribution of
independent moves is no longer purely additive. Rodrigues et al.
[13] do not provide a different notion of independent moves,
neither it is easy to see an obvious one.

2.2. Integrating GPIs on parallel machines and dynasearch

A possible drawback of the basic GPI neighborhood is that, in a
parallel environment, the working sequence on each single machine
is poorly optimized, since the machine-sequencing criterion is
extremely crude. We then investigated the opportunity of adding a
single-machine optimization phase through the use of a dynasearch
neighborhood. We tested the following algorithms, called A1 and A2,
respectively, on a set of random instances.

Algorithm A1. The GPI iterated local search of [13] (kindly provided
by the authors).

Algorithm A2. The same algorithm, where after building a
schedule by the dispatching rule, each single-machine is optimized
by a full descent using the GPI dynasearch neighborhood where
moves (1)–(4) are used.

All random instances considered in this work are adapted from the
well-established literature on tardiness problems in single-machine
environments. The single-machine instances are characterized by
uniformly distributed random data with processing times pi and
weights wi from [1,100], and due dates from the uniform distribution
½ð1�T�R=2Þ

Pn
i ¼ 1 pi,ð1�TþR=2Þ

Pn
i ¼ 1 pi�. The two real-valued para-

meters R, T are called due date range and tardiness factor—they
determine the practical difficulty of the instances, accordingly with
(among others) Refs. [6,12]. The due dates are adapted to the parallel
machines case by scaling the due dates by 1

m (rounding down the
obtained values).

In order to test A1 and A2 we considered a batch of 125
random instances with n¼100, m¼4. We recorded the perfor-
mances of the algorithms in terms of time spent for reaching the
best solution and number of local search descents performed. For
both algorithms we allowed 1 h of CPU time. Table 1 points to a
comparison of the computational costs of the two algorithms in
terms of CPU time and number of descents, detailing them by (R,T)
pairs – each (R,T) ‘‘class’’ is made of five instances. Out of the 125
instances in the batch, Algorithm A2 delivered better solutions in
37 cases, and worse solutions in 27 (columns labeled ‘‘#Bests’’). The
higher number of better solutions comes at the cost of higher CPU
times to be spent in the search. The number of descents required to
reach the best solution is always consistently less for Algorithm A2
than for Algorithm A1, but Algorithm A2 – quite expectedly –
exhibits in most cases higher CPU times, since every solution
undergoes a full dynasearch descent on each machine. Anyway, in
the details of the tests we were able to observe that on 18 instances
of the batch, Algorithm A2 finds a better solution and requires less
CPU time to reach the optimum; this behaviour comes out with
dramatic evidence on some classes of instances like R¼0.6, T¼0.6,
and the classes with R¼1.0. This test suggests that an effort for
keeping highly optimized sequences on the machines can be worth,
if a clever search strategy can be developed in order to limit the
growth of the CPU time

Table 1
Basic GPI local search (Algorithm 1) and GPI+dynasearch (Algorithm 2). Comparison

for n¼100, m¼4.

R T Algorithm A2 Algorithm A1

CPUavg Ndescavg #Bests CPUavg Ndescavg #Bests

0.2 0.2 21.17 3.60 0 1.36 4.40 0

0.2 0.4 27.65 3.20 0 7.10 27.00 0

0.2 0.6 1164.99 147.80 1 301.41 1266.40 0

0.2 0.8 2246.95 252.00 1 540.10 3793.40 0

0.2 1.0 1690.30 205.20 2 723.50 6689.40 0

0.4 0.2 121.81 21.00 0 5.43 22.60 0

0.4 0.4 46.43 4.80 0 25.07 99.20 0

0.4 0.6 752.06 90.80 2 1167.06 5924.60 1

0.4 0.8 1662.31 178.60 1 1057.19 8114.60 4

0.4 1.0 1370.86 165.20 2 976.78 8721.60 3

0.6 0.2 4.00 0.00 0 0.07 0.00 0

0.6 0.4 143.21 19.00 0 163.62 614.40 0

0.6 0.6 414.91 45.00 2 1472.98 8029.20 0

0.6 0.8 2075.77 223.00 3 2085.35 14456.20 2

0.6 1.0 901.48 91.40 3 2178.29 18166.40 2

0.8 0.2 4.20 0.00 0 0.07 0.00 0

0.8 0.4 546.14 84.40 0 210.41 890.80 1

0.8 0.6 1808.82 196.40 2 1781.18 10169.60 2

0.8 0.8 2378.09 244.40 4 1562.70 10504.00 1

0.8 1.0 3004.82 339.80 3 1149.06 9383.20 1

1.0 0.2 4.05 0.00 0 0.07 0.00 0

1.0 0.4 591.58 84.00 0 420.00 2359.80 0

1.0 0.6 1459.21 147.00 3 1855.63 10910.00 2

1.0 0.8 1015.41 107.20 5 2073.00 13795.40 0

1.0 1.0 1879.91 210.40 3 2338.92 17907.40 2

F. Della Croce et al. / Computers & Operations Research 39 (2012) 1213–12171214

Download English Version:

https://daneshyari.com/en/article/475821

Download Persian Version:

https://daneshyari.com/article/475821

Daneshyari.com

https://daneshyari.com/en/article/475821
https://daneshyari.com/article/475821
https://daneshyari.com

