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ABSTRACT

Pure-silica IZM-2 was synthesized for the first time, and the concentration of sodium hydroxide used
during synthesis affected the phase purity and size of crystals. Most of the micropores in calcined pure-
silica IZM-2 that was synthesized in the presence of high concentrations of sodium hydroxide were
inaccessible to N adsorption; however, the micropores could be rendered accessible by applying either
of two different post-synthetic treatments. Pure-silica IZM-2 could also be synthesized without sodium
ions using the hydroxide version of the template. In this case, the micropores were accessible to N;
directly after calcination. The size of pure-silica IZM-2 crystals obtained increased with the concentration
of sodium hydroxide, with the highest concentrations giving spherical and micrometer-sized aggregates
of pure-silica IZM-2 that consisted of intergrown particles (60—500 nm). The nature of the defects in
pure-silica IZM-2 was studied with a combination of 'H, and 2°Si solid-state NMR spectroscopy. As ex-
pected, direct-polarization 2°Si NMR spectroscopy showed that the number of non-condensed silica
groups decreased upon calcination. Calcined samples also showed broader 2°Si NMR bands for the fully
condensed silica moieties, which indicated a broader distribution of bond angles and/or bond lengths.
The siloxy and silanol groups in calcined pure-silica IZM-2 were accessible to protonation as determined
by 'H NMR spectroscopy. We could not determine the structure of pure-silica IZM-2 in its aggregated
form; however, further studies of the synthetic conditions could yield larger, non-aggregated crystals

that would facilitate structural determination.

© 2016 Published by Elsevier Inc.

1. Introduction

Zeolites are crystalline microporous aluminum silicates, and
they are being extensively used for catalysis, gas separation and ion
exchange [1]. Pure-silica zeolites have enhanced thermal stability
and hydrophobicity [2], which make them relevant for CO, removal
from natural gas mixtures, flue gas, or mixtures with H, [3—8], and
capture of volatile organic compounds [9]. Their potential as in-
sulators with ultra-low dielectric constants for the semiconductor
industry is also being investigated [10]; however, note that today's
porous inorganic low-k materials do not withstand the processing
conditions of this industry [11].

The frameworks of pure-silica zeolites consist solely of silicon
covalently bonded with oxygen, and at least 41 polymorphs have
been synthesized and studied [12]. Specific aspects of the nucle-
ation and crystallization growth mechanisms for this class of
compounds are known [13,14]. To better understand the
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mechanisms of crystallization is very important for the design of
pure-silica zeolites and regular zeolites [15]. In addition, pure-silica
zeolites are compositionally simple and often suitable model sys-
tems of zeolites [16].

Pure-silica zeolites are synthesized hydrothermally in either
OH™-rich (pH > 10) or F~-rich media (neutral pH). The as-made
pure-silica zeolites synthesized in OH -rich media have more
connectivity defects [17]. These defects are commonly siloxy-
silanol pairs that balance the positive charge of organic templates
and are located on the external surfaces as well as within the
frameworks [18]. The number of defects are reduced by the
condensation of silanol groups into fully-connected frameworks
[19] or peroxy linkages [20,21], during calcination. For calcined
pure-silica zeolites, the medium of synthesis is less relevant to the
number of defects. Trzpit et al. showed similar numbers of defects
in calcined silicalite-1 synthesized in a OH -rich and a F -rich
medium [22].

Pure-silica and high-silica zeolite nanocrystals [23] can be used
to manufacture membranes and thin films, which are desirable for
application in catalysis, gas separation and low-k thin films
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[24—27]. The 1ZM-2 zeolite is a high-silica zeolite that could be
relevant for membranes if non-aggregated nanocrystals could be
synthesized. Its structure is unknown, and it was first synthesized
by A. Fecant and N. Bats [28]. This zeolite consists of intergrown
nanocrystals with intercrystalline slit-shaped mesopores [29].
Previously, three of us reported on a post-treatment method, which
etched and enlarged the inter-particle-based mesopores in the
aggregated particles of 1ZM-2. The original crystallinity and
framework composition was kept intact [30]. Here, we present a
study of the synthesis of pure-silica IZM-2 and its defects.

2. Experimental
2.1. Zeolite synthesis and Na ion removal from framework

Pure-silica IZM-2 was synthesized by modifying the method
used for the synthesis of [ZM-2 [29]. Two silica sources were used,
LUDOX® HS-40 colloidal silica and tetraethyl orthosilicate (TEOS),
with molar ratios of: x NayO: 0.15 template: 1 SiO,: 30 H,0; x
equals to 0, 0.03, 0.08 and 0.24. LUDOX-based samples were
denoted as LO, L03, LO8 and L24, and TEOS-based ones as T0, TO3,
TO8 and T24. Typically, aliquots of a solution of sodium hydroxide
(50 wt%) were diluted by adding 7.5 g of distilled water. To these
solutions, 1.1 g of the organic template (1,6-
bis(methylpiperidinium)hexyl dibromide) was added and dis-
solved, followed by an addition of 2.25 g of LUDOX. The mixtures
were stirred on a multi position stirrer (IKA) at room temperature
for 2 h and subsequently transferred into 23-ml-stainless auto-
claves. The autoclaves were placed in a preheated oven at a tem-
perature of 160 °C for 4 or 10 days. White powders formed and
were recovered by centrifugation. The powders were washed with
distilled water until the pH values of the eluates were neutral and
subsequently dried at a temperature of 70 °C for 12 h. The organic
template was removed by calcination at 550 °C for 6 h. The tem-
perature was ramped from room temperature to the target tem-
perature using a rate of 1.5 °C/min, and the full procedure took 12 h.
When TEOS was used, ethanol was evaporated from the gels before
they were transferred to autoclaves. For TEOS-derived gels, the
autoclaves were kept for crystallization at a temperature of 180 °C
for 7 or 10 days. When preparing LO and TO, the counter ions of the
template were ion-exchanged from Br~ to OH™ by using an
Amberlite® IRN-78 resin. The OH™ concentration was determined
by phenolphthalein titration. The OH™ concentration in the syn-
thesis gels for LO and TO was kept identical to those of LO3 and TO3.

The Na' ions of the Na'-rich LO8 were removed or partly
removed with two different approaches. First, the as-made LO8 was
treated three times with an aqueous solution of ammonium nitrate
(0.5 mol/dm?) at a temperature of 60 °C. The ammonium treated
samples were calcined using the procedure described above. In the
second method, already calcined LO8 was subjected to an aqueous
solution of HCI (0.1 mol/dm?) at a temperature of 60 °C, and then
centrifuged and washed with water. This procedure was repeated
twice.

2.2. Characterization

Powder X-ray diffraction (PXRD) data was collected on a PAN-
alytical X'Pert Pro diffractometer using Cu Ko radiation
(A = 1.5418 A). Scanning electron microscopy (SEM) images were
recorded with a JEOL JSM-7401F microscope using an accelerating
voltage of 2 kV and a working distance of 8 mm. Nitrogen sorption
data were recorded with a Micromeritics ASAP 2020 instrument at
a temperature of —196 °C on samples that had been degassed at a
temperature of 350 °C for 6 h. Brunauer-Emmett-Teller (BET) sur-
face areas were calculated from the adsorption data at relative

pressures (p/po) of 0.05—0.15. The characteristic mesopore size was
determined from the maximum of the pore size distribution, which
was calculated in the Barrett-Joyner-Halenda (BJH) model using the
N, desorption data. Micropore surface areas and volumes were
determined using the t-plot method. Total pore volumes were
determined from the N uptake at p/pp = 0.99 by assuming a
complete pore saturation. Elemental analysis was conducted by
Medac Ltd. in the United Kingdom. Inductively coupled plasma-
optical emission spectrometry (ICP-OES) was used for deter-
mining the Na™ concentration with a Varian Vista MPX ICP-OES
instrument and CHN analysis was performed on a Carlo Erba
Flash 1112 elemental analyser. Thermogravimetric analysis was
carried out with a Perkin Elmer TGA 7 instrument. Particle size
distributions of colloidal dispersions were measured at room
temperature by dynamic light scattering (DLS) with a Malvern
Zetasizer Nano series instrument.

29si magic angle spinning (MAS) NMR spectra were recorded on
a 94 T Bruker Avance-III spectrometer (Larmor frequency of
79.5 MHz) equipped with a 7 mm double-resonance MAS probe.
Spectra were recorded at a MAS rate of 7 kHz. Tetramethylsilane
was used to externally calibrate the chemical shift and to estimate
the strength of the radio frequency (rf) pulse used for direct po-
larization (DP) experiments. For all DP experiments, a rf pulse with
a 45° flip angle a repetition delay of 300 s were applied. For the
cross polarization (CP) experiments, the repetition delays were set
to 3 or 10 s, and cross-polarization times of 4 and 9 ms were used.
'H spectra were recorded using a repetition delay of 15.5 s. A
moderately wide exponential function was applied to the recorded
free-induction decays prior to Fourier transformation. The spectra
were normalized with respect to the mass of the sample when
stated.

3. Results and discussion

Pure-silica IZM-2 was synthesized with different sodium hy-
droxide concentrations as well as without sodium hydroxide. Small
colloidal silica particles (LUDOX) and larger TEOS-derived silica gels
were used as silica sources. The compositions and some synthesis
conditions are listed in Table 1. MTW and MFI are framework type
codes [31].

The PXRD patterns of both as-made and calcined samples are
shown in Fig. 1. LO, L03, and LO8 consisted of pure-silica IZM-2.
Sodium hydroxide significantly reduced the crystallization time
needed to achieve IZM-2. The crystallization time for LO3 and LO8
was 4 days and that of LO was 10 days. Similarly, alkali-metal ions
have already been shown to accelerate the crystallization of pure-
silica variations of the ZSM-12, SSZ-24 and ZSM-48 zeolites [32].
At high concentrations, however, the structure-directing action of
the alkali-metal appears to compete with that of the template [33].
Such a competition was observed for the L24 sample, which was
synthesized at the highest concentration of sodium hydroxide. In
addition to pure-silica IZM-2, this sample had additional PXRD lines
at 21.7° and 36.4°, which were attributed to a dense compound. The
sodium hydroxide appeared to have started to compete with the
organic templates and directed the crystallization towards other
phases. Notably, the PXRD lines of the pure-silica IZM-2 in the L24-
as-made sample were narrower than in the other LX-as-made
samples. This difference suggests that the degree of crystallinity
increased with the concentration of sodium hydroxide used in the
synthesis. This increase could potentially allow for further opti-
mizing of the synthesis conditions for the synthesis of large crystals
of pure-silica IZM-2.

The PXRD patterns of the calcined samples, in Fig. 1b, had higher
line intensities in the low-angle region as compared to the as-made
samples due to enhanced X-ray contrast [34]. Interestingly, the



Download English Version:

https://daneshyari.com/en/article/4758584

Download Persian Version:

https://daneshyari.com/article/4758584

Daneshyari.com


https://daneshyari.com/en/article/4758584
https://daneshyari.com/article/4758584
https://daneshyari.com/

