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a  b  s  t  r  a  c  t

Scale  issues  become  very  important  when  applying  weather  time  series.  We  address  problems  associ-
ated  with  transferring  meteorological  data  across  time  scales  by comparing  multifractal  properties  of
hourly and  daily  meteorological  time  series.  The  multifractal  detrended  fluctuation  approach  revealed
that  temporal  aggregation  of  agro-meteorological  time  series  can impact  on their multifractal  properties.
The most  apparent  evidence  of  changing  the  time  scale  on  multifractal  properties  was  found  for  precip-
itation.  It  was  the least  noticeable  for the  wind  speed  time  series.  The  change  from  hourly  to  daily  time
scale  had  an  effect  on  the long-range  correlations  and  the  broadness  of the probability  density  function.
The  contribution  of  these  two  components  to series  multifractality  was  smaller  than  before  data  aggre-
gation.  Our  results  confirm  the  loss  of  unique  multifractal  features  at daily  time  scale  as  compared  to
hourly  time  series.

© 2017  Elsevier  B.V.  All  rights  reserved.

1. Introduction

Long-term meteorological time series are the main source of
information of the processes in the atmosphere related to climate
change. They are used to analyze trends in specific periods, to simu-
late future predictions of climate and are inputs to crop production
models (Schär et al., 2004; Moore et al., 2005; De Gooijer and
Hyndman, 2006; Krug, 2007; Kahiluoto et al., 2014). Special inter-
est in scale issues is evinced by modelling linkages across different
temporal and/or spatial scales of a given process (Diaz-Nieto and
Wilby, 2005; Wilby et al., 2014).

Many meteorological climate variables are considered in cli-
mate impact research, with air temperature and precipitation
receiving the most attention. Other parameters receive much less
attention, though they still may  impact significantly on global
functioning of ecosystems and on crop production. Frequently
mentioned parameters linked to climate change processes are
ozone concentration (Fagnano and Maggio, 2010), CO2 concentra-
tion (Wang et al., 2016b), incident solar radiation and relative air

Abbreviations: DFA, detrended fluctuation analysis; MFDFA, multifractal
detrended fluctuation analysis; MFDMA, multifractal detrended moving average;
WTMM,  wavelet transform modulus maxima; STL, seasonal and trend decomposi-
tion using loess.
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humidity (Lohmann et al., 2006; King et al., 2015). The time scale
of the series used in climate change studies is at least 30 years.
However, other interesting aspects of time series analysis such as
temporal and spatial scaling have successfully been performed on
shorter time series (Derot et al., 2016). Scale issues can be dealt with
by disaggregation and downscaling techniques. The downscaling
approach aims at producing the finer-scale of the process with the
required statistics being consistent with the process at the coarser
scale. Disaggregation aims at producing a finer-scale process that
adds up to the given coarse-scale total (Lombardo et al., 2012). Tem-
poral scale problems are fundamental in prediction models, when
the modelling scale is much smaller than that of the observation
(Hoffmann et al., 2017). For instance, the scale discrepancy between
model output and the resolution required for modelling was  stud-
ied for hydrological models (Fowler et al., 2007; Groppelli et al.,
2011), weather prediction models (Avila et al., 2015) and crop mod-
els (Pirttioja et al., 2015; Zhao et al., 2016; Ruiz-Ramos et al., 2017).
Usually, long-term historical records from standard meteorological
stations are delivered as daily data, but in many applications hourly
or sub-hourly data are needed. This is similar to satellite meteoro-
logical data that are possessed at a temporal scale of several hours,
while many applications require higher resolutions (Koutsoyiannis
and Langousis, 2011). Therefore, the impact of temporal scale on
the dynamics of complex systems are crucial and have attracted
the attention of many authors (Chu et al., 1997; Stewart-Oaten and
Bence, 2001; Hewitt et al., 2007; Zhou and Leung, 2010; Zhang and
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Ge, 2013). Specifically, it is relevant to find out how the presence
of localized trends and non-stationarities in the meteorological
time series is preserved when changing their time scale. The non-
stationarities of a time series can be evaluated via either their
temporal fluctuations, which are expressed the presence of local-
ized trends and non-stationarities in the meteorological time series
is preserved when changing their time scale. The non-stationarities
of a time series can be evaluated via either their temporal fluctu-
ations, which are expressed through the power spectral density,
or the long-range correlations in the series, i.e., correlations that
decay as a power law shape of the power spectrum rather than
the more intuitive exponential decay. Long-range temporal corre-
lations indicate that even data points that are separated by a very
long time still can be correlated.

Useful information about the dynamics of meteorological series
and the impact of climate variability on ecological systems can be
obtained by combining fractal and chaos methods for processing
meteorological time series (Kalauzi et al., 2005; Chaudhuri, 2006).
Various methodological approaches have been attempted in study-
ing fractal phenomena in complex systems. These include Rescaled
Range Analysis and Detrended Fluctuation Analysis − DFA, which
are used to analyze properties of mono-fractal time series, as well as
Multifractal Detrended Fluctuation Analysis − MFDFA (Kantelhardt
et al., 2002), Multifractal Detrended Moving Average − MFDMA
(Gu and Zhou, 2010) and Wavelet Transform Modulus Maxima
−WTMM  (Muzy et al., 1993), which are applied to study multifrac-
tal scaling and long-range correlation properties of non-stationary
time series data. Many systems can be characterized by complex
behavior, described as “multifractality” suggesting different scaling
laws for different orders of correlations.

In particular, multifractal analysis is a powerful method to char-
acterize long-range correlations within the time series through
calculation of different scaling exponents for different parts of the
series (Kantelhardt et al., 2006). Prior studies have indicated the
multifractal nature of many meteorological quantities, including
air temperature (Koscielny-Bunde et al., 1998; Bartos and Jánosi,
2006; Lin and Fu, 2008; Yuan et al., 2013), soil temperature (Jiang
et al., 2013), precipitation (Deidda, 2000; García-Marín et al., 2008;
De Lima and de Lima, 2009; Gemmer et al., 2011; Lovejoy et al.,
2012), wind speed (Kavasseri and Nagarajan, 2005; Feng et al.,
2009; Baranowski et al., 2015), and ozone concentration (Jimenez-
Hornero et al., 2010), as time series of those quantities were shown
to exhibit self-similar properties. Multifractals were introduced in
the field of economics to surpass the shortcomings of classical the-
ories that predict the impossibility of occurrence of precipitous
events. When the dimension of a time series is noninteger, this
is associated with two specific features: inhomogeneity − extreme
fluctuations at irregular intervals, and scaling symmetries − defi-
nite relationships between fluctuations over different separation
distances. In some cases, such as exchange rates, the underly-
ing structural equations give rise to fractality. From among many
methods of multifractal analysis, Multifractal Detrended Fluctua-

tion Analysis (MFDFA) proved to be useful for studying multifractal
scaling properties and the detection of long-range correlations in
noisy, non-stationary time series (Kantelhardt et al., 2002). The
application of this method confirmed multifractality of the major-
ity of meteorological time series including rainfall (Valencia et al.,
2010; Yu et al., 2014), ground surface temperature (Jiang et al.,
2013), air temperature, and relative humidity (Baranowski et al.,
2015).

The aim of this study is to elucidate to what extent the temporal
aggregation of various meteorological time series influences their
temporal scaling properties. For this purpose hourly and daily 14
years’ time series of four different meteorological quantities are
used.

2. Materials and methods

2.1. Study site and meteorological data

The experimental data were collected at a meteorological sta-
tion located in Felin (51◦15′N, 22◦35′E), near Lublin, Poland. The
area belongs to the Lublin Upland on the east bank of the Bystrzyca
River, free of ravines, at an elevation of 205–215 m a.s.l., with
the groundwater table at a depth of 15 m.  The site has a warm
summer continental climate (Köppen-Geiger climate classification:
Dfb). The soil of the site is an Orthic Luvisol developed from loess
over limestone. During the entire period of the experiment (i.e.
2001–2014), soil was  covered with grass harvested five times a
year, monthly from May  to September. Long-term annual mean
temperature and precipitation at the site are 8.9 ◦C and 564 mm,
respectively.

The weather time series were measured from May  8th 2001 to
November 11th 2014. Four variables were considered: air (2 m)  and
soil temperatures [◦C], precipitation [mm] and wind speed [m s−1].
All readings were recorded on a DL2e data logger (Delta-T Devices
Ltd, U.K.). The air temperature was  measured with an RHT2 sen-
sor (Delta-T Devices Ltd, U.K.). It was  mounted 2 m above the soil
level, and each hourly reading was obtained as an average from
60 one-minute readings. The soil temperature was measured at a
depth of 0.05 m in the soil profile with the waterproof IP68 sensor
(Eijkelkamp, The Netherlands). This sensor is fitted with a Fenwall
thermistor (2250 ohm at 25 ◦C) and has accuracy of 0.1 ◦C for the
measuring range of 0–50 ◦C. Precipitation was  measured 1 m above
the grass cover with a rain gauge type RG2 (Delta-T Devices Ltd,
U.K.). The wind speed was measured 2 m above the grass cover
with an AN4 anemometer (Delta-T Devices Ltd, U.K.) every minute
and was  averaged to hourly values.

The descriptive statistics of the meteorological time series are
presented in Table 1. The comparison of hourly and daily values
of the studied meteorological time series reveals the high similar-
ity of mean values and slight differences in maximum, minimum,
standard deviation values, as should be expected, because those
features should be smeared by time-averaging. The parameters of

Table 1
Descriptive statistics of the hourly and daily 14 years’ meteorological time series from station located in Felin, Lubelskie Voivodship, Poland.

Meteorological variable Time interval Mean Min Max  Std Median Skewness Kurtosis

Precipitation (mm) hourly 0.1 0.0 51.0 0.48 0.0 27.675 1589.800
daily  1.5 0.0 64.4 4.16 0.0 5.515 46.531

Wind  speed (m/s) hourly 1.6 0.0 20.2 1.11 1.4 1.293 7.048
daily  1.6 0.0 6.7 0.83 1.4 1.338 5.515

Air  temperature (◦ C) hourly 8.9 −28.9 35.6 9.43 9.2 −0.139 2.596
daily  8.9 −22.5 27.5 8.95 9.6 −0.328 2.433

Soil  temperature (◦ C) hourly 10.3 −5.4 47.4 8.46 10.1 0.190 1.789
daily  10.3 −4.6 29.7 8.29 10.3 0.095 1.570

Mean, minimum, maximum, standard deviation (Std) and median have units corresponding to the units of meteorological variable; skewness and kurtosis are non-
dimensional.
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