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a  b  s  t  r  a  c  t

Non-photosynthetic  components  within  the  canopy  (e.g.,  dry  leaves  and stem)  contribute  little  to pho-
tosynthesis  and  therefore,  remote  sensing  of gross  primary  production  (GPP)  could  be  improved  by the
removal  of  these  components.  A  scaled  enhanced  vegetation  index  (EVI),  which  is usually  regarded  as
a linear  function  of EVI,  was found  to have  the  strongest  relationship  with  chlorophyll  level  fraction  of
absorbed  photosynthetically  active  radiation  (FPARchl)  and  can  help  improve  GPP  estimation  in  crop-
lands  compared  to canopy  level  FPAR  (FPARcanopy).  However,  the  application  of  the  FPARchl  theory  to
other  plant  functional  types  (PFTs)  and  the underlying  reasons  remain  largely  unknown.  In  this  study,
based  on  standard  MODIS  algorithm  we  comprehensively  assessed  the  performances  of  FPARcanopy,
scaled  EVI  (FPARchl1),  normalized  difference  vegetation  index  (NDVI),  scaled  NDVI  (FPARchl2)  and  EVI
as  proxies  of FPAR  for estimating  GPP  at four  forest  and  six  non-forest  sites  (e.g.,  grasslands,  croplands  and
wetlands)  from  ChinaFLUX,  representing  a wide  range  of ecosystems  with  different  canopy  structures
and  eco-climatic  zones.  Our  results  showed  that  the scaled  EVI  (FPARchl1)  as FPAR  effectively  improved
the  accuracy  of estimated  GPP  for the entire  PFTs.  FPARchl1  substantially  improved  forest  GPP estima-
tions  with  higher  coefficient  of  determination  (R2), lower  root  mean  square  error  (RMSE)  and  lower  bias.
In comparison,  for non-forest  PFTs,  the  improvement  in  R2 between  estimated  GPP based  on FPARchl1
(GPPchl1)  and flux  tower  GPP  was  less  evident  than  those  between  flux  GPP  and  GPP  estimations  from
FPARcanopy  (GPPcanopy),  FPARchl2,  NDVI  and  EVI.  The  temperature  and  water  attenuation  scalars  played
important  roles  in  reducing  the difference  of  various  GPP  and  indirectly  reducing  the impact  of different
FPARs  on  GPP  in  non-forest  PFTs.  Even  so,  FPARchl1  is an  ecologically  more  meaningful  parameter  since
FPARchl1  and  flux  tower  GPP  dropped  to  zero  more  synchronously  in  both  forest  and  non-forest  sites.  In
particular,  we  found  that  the  improvement  of GPPchl1  relative  to  GPPcanopy  was  positively  correlated
with  the  maximum  leaf  area  index  (LAI),  implying  the  importance  of  site  characteristic  in regulating
the  strength  of the  improvement.  This  is  encouraging  for remote  sensing  of  GPP  for  which  vegetation
parameter  retrieval  has  often  been  found  to be less  successful  at high  LAI  due  to  saturations  in reflective
and  scattering  domains.  Our  results  demonstrate  the significance  of  accurate  and  ecologically  meaningful
FPAR  parameterization  for improving  our  current  capability  in  GPP  modeling.

© 2016  Elsevier  B.V.  All  rights  reserved.

1. Introduction

Accurately accounting of ecosystem level carbon cycle is a
key issue in global climate change research (Keenan et al., 2012;
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Richardson et al., 2012). Gross Primary Production (GPP) is defined
as the total amount of carbon dioxide fixed by plants through the
process of vegetation photosynthesis which is an important com-
ponent of the terrestrial carbon cycle (Gitelson et al., 2006; Liu
et al., 2014b; Running and Nemani, 1988; Running et al., 2004; Wu
et al., 2009). In recent decades, improving ecosystem model param-
eterizations to reduce uncertainty of GPP estimation has become a
critical focus for understanding of vegetation response to global cli-

http://dx.doi.org/10.1016/j.agrformet.2016.12.001
0168-1923/© 2016 Elsevier B.V. All rights reserved.

dx.doi.org/10.1016/j.agrformet.2016.12.001
http://www.sciencedirect.com/science/journal/01681923
http://www.elsevier.com/locate/agrformet
http://crossmark.crossref.org/dialog/?doi=10.1016/j.agrformet.2016.12.001&domain=pdf
mailto:wucy@radi.ac.cn
mailto:pengdl@radi.ac.cn
dx.doi.org/10.1016/j.agrformet.2016.12.001


Z. Liu et al. / Agricultural and Forest Meteorology 233 (2017) 222–234 223

mate change (Cheng et al., 2014; Liu et al., 2015; Yuan et al., 2015,
2007; Zhang et al., 2015). To this regard, the Eddy Covariance (EC)
technique from global flux tower networks provides valuable data
sources for validating and calibrating the parameters of ecosystem
models to improve GPP estimation capability (Schimel et al., 2015;
Wu et al., 2011).

Satellite remote sensing data provides input data to calculate
GPP in time and space for continuous monitoring of dynamic vege-
tation cover. Running and Nemani (1988) and Running et al. (2004)
employed the Normalized Difference Vegetation Index (NDVI) as
a proxy of Fraction of absorbed Photosynthetically Active Radia-
tion (FPAR) to compute GPP as NDVI was found to be comparable
to FPAR. A scaled NDVI was employed as FPAR in a considering
conductance-limited and radiation-limited GPP model (Yebra et al.,
2015). Moderate resolution Imaging Spectroradiometer (MODIS)
standard GPP algorithm (MOD17) was directly forced by MODIS
FPAR (MOD15A2) product derived from a radiative transfer model
and a back-up algorithm considering the relationship between
NDVI and FPAR when radiative transfer model fails (Knyazikhin
et al., 1998; Myneni et al., 2002; Zhao et al., 2005). Huete et al.
(1997) first developed the Enhanced Vegetation Index (EVI) using
three spectral bands, blue (459–479 nm), red (620–670 nm)  and
near-infrared (941–876 nm)  and demonstrated that EVI was  more
sensitive to high vegetation compared to NDVI. Therefore, in sev-
eral light use efficiency (LUE) models, EVI was also employed as
a proxy of FPAR, such as Vegetation Photosynthesis Model (VPM)
(Xiao et al., 2004a; Xiao et al., 2004b), Greenness and Radiation (GR)
model (Gitelson et al., 2006; Peng et al., 2013), and Vegetation Index
(VIM) model (Wu et al., 2010). Scaled vegetation index (SVI, e.g.
scaled EVI or scaled NDVI) is usually regarded as a linear function
of vegetation index (VI), where SVI = a0 × VI + b0 (a0 is the scal-
ing factor, and b0 is the y-intercept). Earlier study employed scaled
EVI in Temperature and Greenness (TG) model based entirely on
remote sensing data to calculate GPP estimates, and suggested that
scaled EVI better captures GPP variations in their empirical model
(Sims et al., 2008). A recent study indicated that the empirical linear
regression between Absorbed Photosynthetically Active Radiation
(APARcanopy) and GPP measured from flux towers did not pass
through the zero intercept, which consequently limited the appli-
cation of vegetation indices for GPP modeling (Zhang et al., 2015).
These results consistently suggested that scaled vegetation indices
effectively improved the performance of LUE models, and scaled
EVI had the strongest capability for GPP estimation because it was
more physiologically meaningful due to a better relationship with
chlorophyll level FPAR (Zhang et al., 2015). However, such findings
mainly focused on croplands that have less canopy heterogene-
ity and clumping, and therefore its capability is largely unknown
for other plant functional types (PFTs, e.g. forests, grasslands and
wetlands) with much complicated range of canopy structures and
heterogeneity (Zhang et al., 2014a; Zhang et al., 2014b; Zhang et al.,
2015).

In order to investigate the feasibility of scaled EVI as FPAR for
improving GPP estimates in non-crop ecosystems, we employed
MOD17 algorithm and different FPAR products to compare
simulated GPP accordingly. The MOD17 algorithm follows the Mon-
teith’s equation, in that GPP can be calculated by computing the
LUE and APAR, respectively (Monteith, 1972; Zhao et al., 2005).
APAR is a product of Photosynthetically Active Radiation (PAR)
and FPAR, the latter being approximated using vegetation indices.
MOD17 product employs MOD15A2 FPAR which is regarded as
a canopy level FPAR (FPARcanopy), comprised of both photosyn-
thetic and non-photosynthetic components together (Cheng et al.,
2014; Myneni et al., 2002; Zhang et al., 2014a). Previous study
explored the relationship between FPARcanopy and FPAR at chloro-
phyll level in leaf (FPARchl, that is photosynthetic component
of FPARcanopy): FPARcanopy = FPARleaf + FPARstem, and FPAR-

leaf = FPARchl + FPARdry matter + FPARbrown pigment (FPARleaf,
FPARstem, FPARdry matter, FPARbrown pigment are FPAR of leaf,
stem, dry matter in leaf, and brown pigment in leaf, respectively)
(Zhang et al., 2012b, 2009, 2005). As only FPARchl contributes
to plant photosynthesis, it is more reasonable to use FPARchl for
calculating GPP estimates in theory. Therefore, in this study, we
separately used five FPARs (FPARcanopy, scaled EVI as FPARchl1,
scaled NDVI as FPARchl2, NDVI and EVI) to calculate GPP at ten flux
tower sites (four forest sites and six non-forest sites) in ChinaFLUX
network. The objectives are (1) to analyze whether using FPARchl
(e.g. scaled EVI) can improve GPP modeling in forests, grasslands
and wetlands, (2) to investigate the influences of PFTs on these
improvements, and (3) to determine the underlying reasons (e.g.,
site characteristics) for such improvements.

2. Materials and methods

2.1. Sites description

We investigated the predicted abilities of LUE-based GPP model
with different derived FPARs inputs at 10 flux tower sites in Chi-
naFLUX network (Fu et al., 2006; Luo et al., 2011; Wang et al., 2006;
Wen  et al., 2006; Yan et al., 2008; Yu et al., 2006; Zhang et al., 2006).
As shown in Fig. 1 and Table 1, four forest sites were comprised of
a mixed forest (Changbaishan site (CBS)), an evergreen needleleaf
forest (Qianyanzhou site (QYZ)) and two evergreen broadleaf for-
est sites (Xishangbanna site (XSBN) and Dinghushan site (DHS));
and six non-forest sites included, a wheat-maize rotation crop-
land (Yucheng site (YC)), four grassland sites (Xilinguolesite (XLGL),
Haibei site (HB), Dangxiong site (DX) and Jilichangling site (JLCL))
and a wetland site (Chongmingdongtan1 site (CM1)). The selection
of these sites was  mainly based on the availability of carbon flux
and micrometeorological observations.

2.2. Flux tower data processing

The ChinaFLUX website provides carbon-water-energy fluxes
and meteorological data at half-hourly scale (http://www.cerndata.
ac.cn/). The data including downward shortwave radiation, PAR, air
temperature, humidity, ecosystem respiration (Re) and net ecosys-
tem exchange (NEE), were gap-filled and quality-controlled based
on guidelines and earlier studies (Yu et al., 2008, 2006, 2013). Daily
data were integrated based on the gap-filled half-hourly values.
Daily gross primary production (GPP) is derived by subtracting Re
from NEE as: GPP = NEE − Re. Then, flux derived GPP, GPP = − GEE,
and flux derived GPP (GPPEC) are presented in the unit of gC/m2/day
(Liu et al., 2015). Finally, 8-day integrated meteorological and car-
bon flux data from daily values were used for calculating GPP at the
site scale.

2.3. MODIS data

The MODIS collection 5 products, including 8-day MOD09A1
reflectance and MOD15A2 LAI/FPAR (hereafter, MOD15A2 FPAR is
regarded as FPARcanopy and MOD15A2 LAI is regarded as LAI),
were obtained from Land Processes Distributed Active Archive Cen-
ter (LPDAAC, https://lpdaac.usgs.gov/). The retrieval of FPARcanopy
is mainly based on a three-dimensional formulation of the radiative
transfer process in vegetation canopy, and meanwhile a look-up-
table method is used for inversion of three-dimensional radiative
transfer problem (Knyazikhin et al., 1998; Myneni et al., 2002).

The 8-day temporal resolution MOD09A1 gives seven
reflectance spectral bands, red (620–670 nm), NIR1 (841–876 nm),
blue (459–479 nm), green (545–565 nm), NIR2 (1230–1250 nm),
SWIR1 (1628–1652 nm)  and SWIR2 (2015–2155 nm). We  com-
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