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A new type of constructive and adaptive heuristics is put forward to generate initial solutions for the
capacitated multi-source Weber problem. This technique is based on guiding the search by constructing
restricted regions that forbid new locations to be sited too close to the previously found locations. In
this work, a restricted region is represented by a circle whose radius is initially set to a fixed value,
based on the sparsity of the customers and the number of facilities, and then a scheme that dynamically
adjusts the radius at each facility is proposed. A discretisation technique that divides a continuous space
into a discrete number of cells while embedding the use of restricted regions within the search is also
presented. The experiments show that the proposed region-rejection methods, though simple and easy
to understand, provide encouraging results with regard to both solution quality and computational effort.
Some future research avenues are also briefly highlighted.

© 2008 Elsevier Ltd. All rights reserved.

1. Introduction

In this study, we deal with a problem where we are given a set of
customers, located at n fixed points, with their respective demands.
We are required to locate M facilities in continuous space to serve
these n customers, and to find the allocation of these customers to
these M facilities without violating the capacity of any of the facili-
ties. The objective is to minimize the sum of the weighted Euclidean
distances. This capacitated continuous location–allocation prob-
lem is also known as the capacitated multi-source Weber problem
(CMSWP) which can be formulated as follows:

Minimize
M∑
i=1

n∑
j=1

xijd(Xi, aj) (1)

Subject to
M∑
i=1

xij = wj, j = 1, . . . ,n (2)

n∑
j=1

xij�b, i = 1, . . . ,M (3)

xij�0, i = 1, . . . ,M; j = 1, . . . ,n (4)
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where M is the number of facilities to be located; xij is the quantity

assigned from facility i to customer j, i = 1, . . . ,M; j = 1, . . . ,n; d(Xi,
aj) the Euclidean distance between facility i and customer j; aj =
(a1j , a

2
j ) ∈ R2 is the location of customer j; Xi = (X1i ,X

2
i ) ∈ R2 are

coordinates of facility i; wj the demand, or weight, of customer j,
where wj ∈ N; and b a fixed capacity of a facility, where b ∈ N.

The objective function (1) is to minimize the sum of the trans-
portation costs. Constraints (2) guarantee that the total demand of
each customer is satisfied. Constraints (3) ensure that capacity con-
straints of the facilities are not exceeded, and constraints (4) refer
to the non-negativity of the decision variables. Note that once the
M facilities are located, the problem reduces to the classical trans-
portation problem (TP).

The solution of this continuous location problem may obviously
be infeasible in practice as the locations could be on the lakes, moun-
tains, forests, etc. Nonetheless there are applications such as locating
oil drills in the sea or desert, see e.g. Rosing [1]. For a more gen-
eral review of applications-oriented literature, see Hodgson et al. [2].
Furthermore, a solution of this problem could be used as a bench-
mark for the discrete problem, or simply as a solution that can be
transformed into a feasible one, for example by incorporating barri-
ers into such location problems (see e.g. the recent work of Bischoff
and Klamroth [3]).

This paper is organized as follows: in the next section we present
a review of the relevant literature. The sections thereafter address
the proposed heuristics. This is followed by a section on computa-
tional results. Finally, the last section presents our conclusions and
highlights some research avenues that we believe are worthwhile
exploring in the future.
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2. Literature review

Most of the literature on the continuous location problem focuses
on the multi-source Weber problem (MSWP). Rosing [1] finds the lo-
cation of steam generators in the Orinoco heavy oil belt of Venezuela
by solving the MSWP. Hansen et al. [4] solve the MSWP through the
p-median problem by considering all fixed points as potential facility
sites. Brimberg et al. [5] carry out a comparison of heuristics includ-
ing those based on variable neighbourhood search and genetic algo-
rithms. Gamal and Salhi [6] present a constructive heuristic based on
the furthest distance rule to find initial locations while introducing
forbidden regions to avoid locations being too close to each others.
Gamal and Salhi [7] create a discretisation based approach known
as a cellular heuristic whereas Salhi and Gamal [8] adopt a genetic
algorithm to solve the problem. Taillard [9] proposes a decomposi-
tion/recombination heuristic that partitions the problem into smaller
subroblems, which are then solved by a candidate list search for var-
ious number of centres. Aras et al. [10] tackle the MSWP using vector
quantization and self-organizing maps for both Euclidean and recti-
linear distances. A variant of this problem is the constrained Weber
problem which is also known as the Weber problem in the Presence
of Forbidden Regions and/or Barriers to Travel. This is investigated
by Katz and Cooper [11] and Hansen et al. [12]. For more details on
this subject see Bischoff and Klamroth [3].

There is, however, a shortage of papers on the CMSWP. The ear-
liest work in this area was conducted by Cooper [13] who develops
exact and heuristic methods. In the exact method, the idea is to gen-
erate all basic feasible solutions using the TP. Starting with any fea-
sible basic solution, the idea is to construct the connected graph of
all basic feasible solutions. For every solution, the location problem
is solved and the solution which yields the minimum cost is chosen
as the optimal solution. In the heuristic method, the alternating
transportation–location heuristic known for short as ATL was pro-
posed. Fundamentally, ATL is a modification of the heuristic method
originally developed by Cooper [14] for the pure location–allocation
problem known as the alternate location–allocation method. The
idea of ATL is that the location–allocation problem and the TP are
alternately solved until no epsilon (�) improvement in total cost is
found. Cooper [15] modifies a heuristic method initially used for
the fixed charge problems in Cooper [16]. It is only in 1994 that the
problem was revisited. Sherali et al. [17] formulate the rectilinear
distance CMSWP as a mixed integer nonlinear programming formu-
lation, and proposed a reformulation–linearization technique (RLT)
to transform the problem into a linear mixed-integer program. Gong
et al. [18] put forward a hybrid evolutionary method based on a ge-
netic algorithm to search the locatable area to find the global or near
global locations. In the allocation stage, a Lagrange relaxationmethod
was applied. Experiments were carried out on randomly generated
data with the number of facilities (M) varying from 2 to 6. Sherali
et al. [19] design a branch and bound approach based on a partition-
ing of the allocation space to develop global optimization procedures
for the capacitated Euclidean and lp distance MSWP. Two bounding
schemes were also put forward based on solving a projected loca-
tion space subproblem and a variant of RLT that reformulated the
problem into a linear programming relaxation. Aras et al. [20] pro-
pose three heuristic methods that use Lagrangean heuristic, the dis-
crete p-capacitated facility location problem which is similar to the
p-median method of Hansen et al. [4], and the cellular heuristic of
Gamal and Salhi [7] to deal with the CMSWPwith Euclidean, squared
Euclidean, and lp distances. In a subsequent research, Aras et
al. [21] adopt their earlier approaches to solve the CMSWP
with rectilinear distance. Aras et al. [22] tackle the CMSWP with rec-
tilinear, Euclidean, squared Euclidean, and lp distances by adopting
simulated annealing, threshold accepting, and genetic algorithms.
These heuristics perform well when tested on the Sherali et al.'s

data sets. Sherali et al. and Aras et al. used their approaches on small
instances (n�30) where the capacity of a facility is not necessarily
the same. Zainuddin and Salhi [23] present a perturbation-based
heuristic for solving the Euclidean CMSWP. A perturbation scheme
was designed by considering borderline customers to form clusters.
These customers are those that lie approximately half-way between
their nearest and their second nearest facilities. Clusters of cus-
tomers were constructed and taken out temporarily whilst the TP
was performed, and then they were introduced back again when
finding the new location. This heuristic outperformed the classical
ATL when tested on large instances (n = 50–1060) with facilities
having the same capacities.

The reader is referred to the recent comprehensive review on
continuous location–allocation problems by Brimberg et al. [24].

3. Solution framework

Our overall solution method is based on Cooper's alternating
transportation–location heuristic. initially, M open facilities are cho-
sen from the customer points (fixed points), then the TP, using these
M open facilities, is employed to obtain the allocation for this capac-
itated problem. Here, the output is the M independent set of alloca-
tions, each subset consisting of ni fixed points where i=1, 2, . . . ,M and∑M

i=1ni�n. Note that we used '� ' instead of '=' as some customers
may have their demand split between different facilities during the
allocation stage. An iterative procedure based on theWeiszfeld equa-
tions, as given in Eq. (5), is then applied to find the new location of
each (i = 1, 2, . . . ,M) of these M facilities.

X1
(k)

i =
∑ni

ji=1wji
a1ji

/d(X(k−1)
i , aji )∑ni

ji=1wji
/d(X(k−1)

i , aji )
and

X2
(k)

i =
∑ni

ji=1wji
a2ji

/d(X(k−1)
i , aji )∑ni

ji=1wji
/d(X(k−1)

i , aji )
(5)

where the superscript k designates the iteration number within the
Weiszfeld iterative procedure; (a1ji

, a2ji
) represents the location of

the set of ni fixed points, ji = 1, 2, . . . ,ni; (X1
(k)

i ,X2
(k)

i ) denotes the

new location of the ith facility at iteration k (i = 1, 2, . . . ,M); and
wji

corresponds to all or a fraction of the jth customer demand that
is served by facility i.

In other words, the demand of some customers might have been
split as a result of the solution of the TP (i.e., wji

�wj). Therefore
some customers may be utilized more than once in Eq. (5), but
each time only with a portion wji

of their demand. The process of
alternating between the location–allocation problem and the TP is
then applied until no improvement in total cost can be found. Fig.
1, which is used as a basis for our research, shows the main steps
of Cooper's alternating transportation–location heuristic. In Step 1,
Cooper [13] selects randomly locations from customer locations as
the initial facility configuration. In this study, we propose, instead in
Step 1, simple but efficient ways of guiding the search for generat-
ing initial starting locations. The idea is to restrict generating initial
locations near those areas that contain the already found locations.
The way these restricted regions are constructed makes up the main
contribution of this study and will be presented in subsequent sec-
tions. To increase the chance of reaching a near optimal solution,
the method is reiterated several times, say K times, using different
random starting locations.

4. A region-rejection based approach

In this section, we introduce the idea of restricted regions which
forbid certain areas close to the previously found locations to be
considered in future for the choice of the remaining open facilities.
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