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A B S T R A C T

Predicting the wetting pattern of a dripper helps in the proper design of the drip irrigation system. An artificial
neural network predictor model was developed based on the data from the well-tested model HYDRUS 2D/3D.
The simulation data grid from HYDRUS was converted to simpler 3-variables vectors of wetting ellipses. The
output vectors contain the radii in x and z directions and the center’s location in the z direction. The simulations
were performed for several textural classes, infiltration times, emitter’s discharges, hydraulic models, and other
features. After training the neural network, the testing dataset showed a correlation of 0.93–0.99, and the tested
patterns showed high similarity to the HYDRUS outputs. Additionally, the paper provided solutions for the
problem of simulating larger flow emitters where the flux exceeds the soil’s hydraulic conductivity and the
problem of converting HYDRUS outputs to easy-to-use vectors of three parameters representing specific moisture
content at a particular time. This work tried a set of 51 input variables’ permutations suggesting the best set of
top results. The best trained neural network is freely available for the benefit of researchers and for future
development. The sensitivity analysis of the input variables showed that the wetting pattern is mostly affected by
time of infiltration, emitter discharge, and the saturated hydraulic conductivity. Future developments of the
model are promising by increasing the training data extremes and possibly by adding more features like emitter’s
depth for the subsurface drippers.

1. Introduction

Drip irrigation system offers the highest water conservation among
all other irrigation systems. The main reason of such conservation is
that it limits the wetted zone to about 30% of that the other systems do,
hence, reduces deep percolation, surface runoff, and evaporation from
the soil surface (Brouwer et al., 1988). The shape of the wetted part of
the soil root zone is called the Wetting Pattern (WP). The WP is a
partially saturated region with truncated-ellipsoid shape whose di-
mensions depend on several factors. These factors depend on the soil
(texture, compaction, hydraulic conductivity, etc.), the plant (type, age,
roots, etc.), the irrigation system’s features (dripper discharge, appli-
cation frequency, etc.), and the climatic conditions (temperature, re-
lative humidity, etc.) (Bhatnagar and Chauhan, 2008; Peries et al.,
2007). Understanding the wetting pattern features is very important to
achieve the reliable design of drip irrigation systems as well as for ef-
ficient management of natural resources (Lazarovitch et al., 2009;
Lubana and Narda, 2001).

Several approaches to simulate the wetting pattern were performed;

these were either empirical, analytical, or numerical (Kandelous and
Šimůnek, 2010a). Empirical approaches use regression tools to derive
an equation based on the results of well-controlled experiments (e.g.
Malek and Peters, 2010). Analytical approaches use mathematical ap-
proximations to the modeled phenomena so that the governing equa-
tion can be solved with some easy calculations (e.g. Cook et al., 2003;
Kandelous et al., 2008). On the other hand, numerical approaches
(Arbat et al., 2013; e.g. Šimůnek et al., 2011) use the same governing
equation as the analytical approaches, but they solve it numerically (by
methods like finite element or finite difference) with almost no ap-
proximation or simplification. Unlike numerical approaches, both
analytical and empirical approaches are fast and easy to solve, but their
results are less precise than the results of the empirical approaches.
Additionally, it worth to notice that the analytical models are useful in
understanding principles than other approaches, but because of the
spread of computers and other smart devices, the numerical methods
became much more attractive as they could handle more complex and
realistic situations (Kalogirou, 2007).

One of the most famous two-dimensional numerical models is the
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HYDRUS (2D/3D) software package (Šimůnek et al., 2011). The model
is a finite element model for simulating the two- or three-dimensional
movement of water, heat, and multiple solutes in variably saturated
media. The model numerically solves the Richards equation for satur-
ated–unsaturated water flow and convection–dispersion type equations
for heat and solute transport. HYDRUS was well-tested by many in-
vestigators for surface or subsurface drip irrigation simulation (Skaggs
et al., 2004; Cook et al., 2006; Arbat et al., 2008; Kandelous and
Šimůnek, 2010a, 2010b; Ramos et al., 2012; Abou-Lila et al., 2013;
Elnesr et al., 2013; Liu et al., 2013). The good results of HYDRUS va-
lidation increases its reliability and trustfulness especially for no-plant
simulation (Mmolawa and Or, 2003; Zhou et al., 2007)

Despite the benefits of the numerical solutions, they are not always
easy-to-use approaches. They are, however, very sensitive to the
boundary and initial condition, they may be unstable if over-relaxation
occur, they may have difficulties with speed and possibility of con-
vergence, the precision is directly-proportional to the required hard-
ware resources, and it needs a higher level of human skills than the
analytical models (Neufeld, 2010; Toombes and Chanson, 2011).
Hence, we need a more robust approach that leads to more realistic and
fast simulations; this might be achieved by the artificial intelligence
approaches. In these approaches, the models attempt to act like the
human brain that collects several input features that frequently appear
together, and link them to the result or output through a complex
nervous system that learns and improves its efficiency over time. This
imitation to the human brain is called the artificial neural networks
(ANN). Several works were published showing attempts to simulate the
in-soil flow of water and solutes.

One of the earliest attempts was the work of Li et al. (2004) who
combined laboratory experiments with the ANN in simulating the dis-
tribution of nitrate fertigated by a dripper; they concluded that the ANN
models are reasonably accurate and can provide an easy and efficient

means of estimating nitrate distribution. Lazarovitch et al. (2009) used
the ANN approach in predicting water distribution around subsurface
drip irrigation. They used HYDRUS simulations (Šimůnek et al., 2011)
as the reference to water distribution, and they tested three scenarios of
input-output combinations concluding that prediction using moment
analyses is probably the most robust and gives an adequate picture of
the subsurface dripper water distribution. Later, Hinnell et al. (2010)
used this approach to develop a Microsoft Excel’s model that depends
on moment analysis to draw contours that are a close representation of
the actual wetting pattern.

1.1. Aim of the work

The objective of this work is to develop a different neural network’s
approach to simulating the wetting pattern from a surface dripper, with
the various timings of infiltration and redistribution, different soil
textural classes, different soil-water retention models, etc. Additionally,
we aimed to use the developed model to evaluate the contribution of
each variable to the drip wetting pattern.

2. Material and methods

2.1. Governing equations of water movement in soil

We used HYDRUS (2D/3D) package to simulate soil-water dis-
tributions under a dripping point source. The model numerically solves
the Richards equation for variably-saturated water flow in soils. The
Richards governing equation in two-dimensional coordinates is as fol-
lows (Tian et al., 2011):

∂
∂

= ∂
∂

⎡
⎣

∂
∂

⎤
⎦

+ ∂
∂

⎡
⎣

∂
∂

⎤
⎦

− ∂
∂

−θ
t x

K h h
x z

K h h
z

K h
z

S h( ) ( ) ( ) ( )
(1)

Nomenclature

θ volumetric water content, L3L−3

t time, T
h soil water pressure head, L
x horizontal coordinate
z vertical coordinate
K unsaturated hydraulic conductivity, LT−1

Ks saturated hydraulic conductivity, LT−1

S sink term representing root water uptake, L3L−3T−1

θr residual water content, L3L−3

θs saturated water content, L3L−3

α empirical parameter for hydraulic models, L−1

n empirical parameter for hydraulic models, –
Φ soil-water flux, LT−1

q emitter discharge, L h−1

m number of emitters per meter, –
r radius, L
Φadj adjusted soil-water flux, LT−1

η wetting ellipse center’s location in z direction, L
β a number from 1 to 9 representing wetting ellipse from

near dryness to near saturation, –
δ wetting ellipse radius in x direction, L
ψ wetting ellipse center’s location in x direction, L
γ Wetting ellipse radius in z direction, L
θβ current moisture content, L3L−3

θx, θn maximum and minimum moisture content, L3L−3

θeff effective saturation, –
τ time factor, –
Ti infiltration time, T
Tts current time-step, T
Te time at the end of redistribution, T
Ns number of records in the training dataset
Ni, No number of input and output neurons
ν number of interconnected neurons in a layer
MFG Method(s) of Features’ Grouping
ANN Artificial neural networks
GIT A quick name for the version control website GitHub.com

Table 1
Properties of the sample soil textures that were used in the simulations.

Texture θr θS Ks (cm/min) Sand (%) Clay (%) Silt (%) α (1/cm) n Abbrev. Plaut Index

Sand 0.045 0.430 0.495000 93 1 6 0.145 2.68 Snd 19
Loamy Sand 0.057 0.410 0.243194 85 5 10 0.124 2.28 LSn 18
Sandy Loam 0.065 0.410 0.073681 65 15 20 0.075 1.89 SnL 13
Loam 0.078 0.430 0.017333 45 15 40 0.036 1.56 Lom 10
Silt 0.034 0.460 0.004167 10 5 85 0.016 1.37 Slt 8
Sandy Clay Loam 0.100 0.390 0.021833 60 25 15 0.059 1.48 SCL 6
Clay Loam 0.095 0.410 0.004333 35 35 30 0.019 1.31 ClL 5
Sandy Clay 0.100 0.380 0.002000 55 40 5 0.027 1.23 SnC 3
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