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Crop height is a very important attribute to assess overall crop condition, irrigation, and estimation of ter-
minal yield. In this study, a novel method to monitor crop height of Sorghum (Sorghum bicolor) using an
Unmanned Aerial System (UAS) is proposed. UAS data were acquired seven times over the growing sea-
son and each aerial acquisition included over 200 images with significant image overlap at an altitude of
50 m above ground. Ortho-mosaic image and 3D point cloud were generated by applying the Structure
from Motion (SfM) algorithm to the images. Ground control points (GCPs) were installed around the
study area and they were surveyed using a real time kinematic (RTK) GPS unit for accurate geo-
referencing of the geospatial data products. A Digital Terrain Model (DTM) and Digital Surface Model
(DSM) were generated from the 3D point cloud data, and a Crop Height Model (CHM) was then created
by subtracting DTM from DSM. Uniform crop grids along the center line of each variety were defined for
further processing. The maximum CHM value within each individual grid was taken to represent crop
height of the grid, and average of all grid heights over the whole area of each variety was calculated as
crop height of individual variety. These measurements were compared with manual crop height mea-
surements. Root Mean Square Error (RMSE) between field measurements and the proposed approach
was 0.33 m. In addition, the height estimates from both field measurement and the proposed approach
could be used to derive a growth curve by fitting a sigmoidal curve. The residual RMSEs between the
observed and predicted value of the curve established from UAS and field measurements were calculated
as 0.05 m and 0.1 m, respectively. The growth curve results showed that the proposed approach indicated
less RMSE and generated more reliable growth curves for monitoring sorghum height.
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1. Introduction Remote sensing techniques from manned airborne and space-

borne systems have been widely adopted for crop monitoring pur-

Crop monitoring is an important component in precision agri-
culture since it is used to assess overall crop condition, determine
when to irrigate, and estimate terminal yield. In addition, under-
standing crop growth pattern is a critical component in crop mon-
itoring (Cloutis et al., 1996; Hunt et al., 2010; Poenaru et al., 2015).
Previous crop monitoring studies have used field measurements or
airborne/space-borne data to effectively cover wide areas. How-
ever, the field-based method has disadvantages to collect data
because it is often destructive, labour-intensive, expensive, time-
consuming, and variable in their implementation (Hollinger,
1997; Chang et al., 2011).

* Corresponding author at: Texas A&M University-Corpus Christi, School of
Engineering and Computing Sciences, 6300 Ocean Dr., Corpus Christi, TX, USA.
E-mail address: Jinha.Jung@tamucc.edu (J. Jung).

http://dx.doi.org/10.1016/j.compag.2017.07.008
0168-1699/© 2017 Published by Elsevier B.V.

poses (Migdall et al., 2009; Mulla, 2013) since measurements are
non-destructive and non-invasive and enable scalable implemen-
tation in space and time (Araus and Cairns, 2014). Although many
have explored crop monitoring using remote sensing technologies,
they have been limited to only a small dataset or low spatial reso-
lution images for time-series analysis. Migdall et al. (2009) derived
crop properties such as green leaf area index, fraction of senescent
material, and grain yield for precision agriculture from airborne
hyperspectral imagery and satellite images. Esquerdo et al.
(2011) studied the potential use of Normalized Difference Vegeta-
tion Index (NDVI) temporal analysis in soybean crop monitoring
with Advanced Very High Resolution Radiometer (AVHRR) imagery
in Brazil. Moderate Resolution Imaging Spectro-radiometer
(MODIS) NDVI temporal profile was analysed for rice and high
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correlation was observed between remote sensing estimates and
ground data (Boschetti et al., 2009).

However, traditional remote sensing platforms have not been
widely utilized in the precision agriculture discipline due to several
logistical challenges; (1) data acquisition can be costly from these
platforms, and (2) they have limited flexibility in terms of temporal
and spatial resolution of the data. Fine spatial and high temporal
resolution data is required to monitor crops accurately through
the growing season for biomass estimation, yield prediction, and
early detection of harmful insects and disease. In this regard,
advances in UAS technology and sensor miniaturization can pro-
vide great opportunities to tackle the challenges encountered with
the traditional remote sensing platforms (Anthony et al., 2014;
Bendig et al., 2014; Rey-Carames et al., 2015). In addition, the cost
of the UAS platform and sensors are rapidly decreasing, making it
much more feasible to develop a low-cost UAS system so that finer
spatial and higher temporal resolution remote sensing data can be
collected (Anthony et al., 2014). This is the reason why UAS tech-
nologies are gaining great attention from agriculture research sci-
entists, hence they can be an alternative solution to address the
limitations of the traditional remote sensing platforms.

Baluja et al. (2012) analysed the relationships between various
indices derived from the UAS imagery, leaf stomatal conductance,
and stem water potential for assessing the water status variability
of a commercial vineyard. The visible spectral indices were calcu-
lated for multi-temporal mapping of the vegetation fraction from
UAV images and the automatic object-based method was proposed
to detect vegetation in herbaceous crops by Torres-Sanchez et al.
(2014, 2015). Rey-Carames et al. (2015) utilized a quadrotor sys-
tem to acquire multispectral images and derived spectral indices
for precision viticulture management. Furthermore, Bendig et al.
(2014) estimated biomass of barley using crop height derived from
UAS imagery, while Anthony et al. (2014) presented a Micro-UAS
system mounted with a laser scanner to measure crop heights. Pre-
vious studies with UAS system for agriculture have not focused on
time-series data, but analysed spatial and spectral information
from UAS data acquired at once.

Among various phenotypic characteristics, crop height is a crit-
ical indicator of crop evapotranspiration (Allen et al., 1998), crop
yield (Lazcano and Dominguez, 2011), crop biomass (Bendig
et al., 2014), and crop health (Anthony et al., 2014). It was shown
that UAS platforms can provide height estimates even with only
an optical sensor (Harwin et al., 2015), but use of UAS data for
monitoring crop growth over the whole growing season has not
been leveraged in the plant breeding discipline. Therefore, the
main aim of this study is to test a novel method to monitor crop
height growth throughout the life cycle of the biomass sorghum
using UAS data. The crop height and growth curve extracted from
UAS data and field measurements were compared to validate the
accuracy and reliability.

2. Study area and data collection

The study area was located at the Texas A&M (Agricultural and
Mechanical) AgriLife Research and Extension Center in Corpus
Christi, Texas, USA, at a latitude of 27°46'35”N and a longitude of
97°33'38”"W (Fig. 1). The sorghum crop was planted on May 1st,
2015 in east-west oriented rows. A plot was 4 rows wide by
120 m long. A total of 41 plots with 35 different genotypes of bio-
mass sorghum were planted, for a total of 164 rows. Aerial images
were acquired from a DJI Phantom 2 Vision Plus platform, which is
manufactured by DJI (Shenzhen, China), on a weekly basis from
June 3rd, 2015 to August 27th, 2015. The RGB camera mounted
on the Phantom 2 Vision Plus take the 14 Megapixels image with
1/2.3 in. We adopted the grid style mission to fly UAS and nadir

(90° vertical) view only to generated ortho-mosaic image and 3D
point cloud for mapping in study area (Fig. 1) (Su and Chou,
2015). Although 11 data sets were acquired during this time per-
iod, only seven dates were used in this study since the quality of
the other data sets was inadequate for analysis due to windy con-
ditions at the time of flights. The wind could cause image blurring
and crop swaying to make difficulty for finding matched points
between images. All data sets, except June 3rd, resulted in over
200 raw images with 90% forward and side overlap at an altitude
of 50 m (Table 1). Approximate locations of raw images (longitude,
latitude, and altitude) were recorded by an onboard GPS, however,
its accuracy is not high enough for direct georeferencing. Eight
Ground Control Points (GCPs) were installed around the study area
for accurate geo-referencing, geo-correction, and co-registration of
UAS data. Four GCP were located on each corner and an additional
4 GCP were installed between the corner targets (Fig. 1). Since the
study area was approximately 2.21 ha in size, the number and
location of GCP were reasonable and enough to remove bowling
effects from UAS data (Mesas-Carrascosa et al., 2015). The coordi-
nates of all GCP were surveyed using an APS-3 RTK GPS, manufac-
tured by Altus Positioning Systems Incorporated (California, USA).
The horizontal and vertical accuracy of the GCP coordinates were
0.3 and 0.7 cm, respectively.

The field measurement data were also collected every 10-day
from June 16th to August 27th, 2015 by removing plants from
the field and measuring crop information including heights in the
lab. There were 5 field measurements for 41 varieties and 3 mea-
surements for 32 varieties since 9 varieties were harvested earlier
(Table 1). Each sampling was conducted on a 1 m long along the
center line and 2 locations (east and west) were sampled for each
variety. Ten plants from each sampling location were randomly
selected for height measurements, and average crop height was
calculated for each variety. Among multiple UAS data collection
and field measurements, the data collected on August 27th is the
only date when both UAS data and field measurements were
acquired on the same date because flying UAS and collecting field
measurement had conducted separately according to the condi-
tions such as weather and growth level. The data on August 27th
were used in this study to evaluate crop height measurements esti-
mated from UAS data.

3. Data analysis

The proposed method is composed of four major steps: (1) pre-
processing of UAS data; (2) Crop Height Model (CHM) generation;
(3) plant height extraction; and (4) growth analysis with growth
curve. The last step is based on time-series analysis of crop heights
calculated from UAS data. The growth curve could be drawn by fit-
ting a non-linear curve from high temporal time-series data
acquired from an UAS platform. The time-series analysis fills the
gap between each flight date and provides estimated data. Crop
height of each genotype was estimated using the individual grid
height information generated by the Structure from Motion (SfM)
algorithm. Crop growth curve was fitted and Root Mean Square
Error (RMSE) between the result of this study and field measure-
ment obtained were calculated.

In the pre-processing step, an ortho-mosaic image and 3D point
cloud data are generated using the Structure from Motion (SfM)
algorithm. The SfM performs a bundle adjustment among images
acquired from the UAS based on matching features between the
overlapped images to estimate interior and exterior orientation
of the onboard sensor. First step of the SfM algorithm is to extract
features in each image that can be matched to their corresponding
features in other images for establishing relative location and
parameters of the sensor (Lowe, 2004; Snavely et al., 2008). After
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