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Soil moisture sensors are increasingly deployed in sensor networks for both agronomic research and pre-
cision agriculture. Soil-specific calibration improves the accuracy of soil water content sensors, but lab-
oratory calibration of individual sensors is not practical for networks installed across heterogeneous
settings. Using daily water content readings collected from a sensor network (42 locations x 5
depths =210 sensors) installed at the Cook Agronomy Farm (CAF) near Pullman, Washington, we devel-
oped an automated calibration approach that can be applied to individual sensors after installation. As a
first step, we converted sensor-based estimates of apparent dielectric permittivity to volumetric water
content using three different calibration equations (Topp equation, CAF laboratory calibration, and the
complex refractive index model, or CRIM). In a second, “re-calibration” step, we used two pedotransfer
functions based upon particle size fractions and/or bulk density to estimate water content at wilting
point, field capacity, and saturation at each sensor insertion point. Using an automated routine, we
extracted the same three reference points, when present, from each sensor’s record, and then bias-
corrected and re-scaled the sensor data to match the estimated reference points. Based on validation with
field-collected cores, the Topp equation provided the most accurate calibration with an RMSE of
0.074 m® m~3, but automated re-calibration with a local pedotransfer function outperformed any of
the calibrations alone, yielding a network-wide RMSE of 0.055 m®> m~>. The initial calibration equation
used in the first step was irrelevant when the re-calibration was applied. After correcting for the refer-
ence core measurement error of 0.026 m® m~> used for calibration and validation, the error of the sensors
alone (RMSE,g;) was computed as 0.049 m® m~>. Sixty-five percent of individual sensors exhibited re-
calibration errors less than or equal to the network RMSEq;. The incorporation of soil physical informa-
tion at sensor installation sites, applied retroactively via an automated routine to in situ soil water con-
tent sensors, substantially improved network sensor accuracy.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

There is growing interest in the use of sensor networks to
address the “right time” dimension of precision agricultural man-
agement (Camilli et al., 2007; Lopez Riquelme et al., 2009; Ojha
et al., 2015), both through commercial applications and research
on improved water-use-management (Mueller et al., 2012). Sen-

Abbreviations: CAF, Cook Agronomy Farm; CRIM, complex refractive index
model; RMSE, Root Mean Squared Error; RMSE.;, Adjusted Root Mean Squared
Error; SEL, standard error of laboratory measurements.
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sors that record temporally dense soil, crop or atmospheric mea-
surements can be combined with spatial data to develop spatio-
temporal models (Camilli et al., 2007; Gooley et al., 2014; Gasch
et al., 2015). For agricultural sensor networks, the most commonly
measured parameter is soil water content (Lopez Riquelme et al.,
2009; Greenwood et al., 2010; Coates et al., 2013; Lorite et al.,
2013; Gooley et al., 2014; Goumopoulos et al., 2014).

Soil water content sensor networks can improve our under-
standing of vadose zone hydrologic processes at the catchment-
or field-scale. Two- and three-dimensional dynamic soil water data
can be used for incorporation into and validation of hydrologic and
biophysical models (Frankenberger et al., 1999; Johnson et al.,
2003; Stockle et al., 2003; Mehta et al, 2004; Brooks et al.,
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2007), and they can directly aid in our understanding of how soil
water relates to environmental properties across space and time,
such as terrain (Western et al., 1999; Brocca et al., 2007), soils
and tillage (Hébrard et al., 2006; Al-Mulla et al., 2009; Ibrahim
and Huggins, 2011), vegetation (Korres et al., 2015), and climate
(Cantén et al., 2004). Sensor networks can also facilitate soil water
monitoring and inform management decisions in irrigated land-
scapes (O’Connell and Snyder, 2004; Salinari et al., 2014). There
is great interest in developing wireless and reactive devices to ease
the use of inexpensive in situ soil water sensors for diverse research
and irrigation management applications (Cardell-Oliver et al.,
2004, 2005; Akyildiz and Stuntebeck, 2006; Bogena et al., 2007;
Pierce and Elliott, 2008; Ritsema et al., 2009; Korres et al., 2015),
and in developing software tools for storing, screening, and deliv-
ering the vast amounts of data produced by the sensor networks
(Collins et al., 2006; Illston et al., 2008; Ritsema et al., 2009;
Dorigo et al., 2011).

A major challenge in obtaining network data is ensuring the
sensor accuracy and precision across heterogeneous soils needed
for research and management purposes (Vereecken et al., 2008).
Many commercially available soil water sensors assess the relative
permittivity (dielectric constant) of the bulk soil (see review by
Bogena et al., 2007; Robinson et al., 2008), which is then converted
to volumetric water content with a “calibration” equation—typi-
cally a quadratic function such as the Topp equation (Topp et al.,
1980). Sensors may also be factory calibrated using a variety of
soils and/or non-soil media (Bogena et al.,, 2007; Kizito et al.,
2008; Decagon Devices, Inc., 2014), such that the sensors produce
accurate readings in a wide range of soil types and physico-
chemical conditions. Using factory calibrations, manufacturers
report water content accuracies of 0.01-0.03 m> m~3 in a variety
of mineral and organic soils under laboratory conditions (Kizito
et al., 2008; Vaz et al., 2013; Decagon Devices, Inc., 2014). How-
ever, specific characteristics of the soil at installation sites may
influence the accuracy of sensor readings (Rosenbaum et al.,
2010; Spelman et al., 2013; Vaz et al., 2013; Ojo et al., 2015a,
2015b), requiring sensor calibrations that account for specific soil
conditions at sensor insertion sites.

The calibration of soil water content instruments can be sepa-
rated into two steps: (1) the conversion of sensor electromagnetic
output to apparent dielectric permittivity, and (2) the conversion
of apparent dielectric permittivity to volumetric water content
(Robinson, 2001). In practice, our interest in calibration accuracy
primarily lies in the second step, since it is the source of most
in situ calibration error. The conversion of apparent dielectric per-
mittivity to volumetric water content may be customized for the
specific soil of interest, or published equations can be assessed
for their use and accuracy in a given soil.

The laboratory calibration approach is to measure the dielectric
constant of a soil of known bulk density at different gravimetric
water contents (Gardner, 1986; Young et al., 1997). Burns et al.
(2014) reported a root mean squared error (RMSE) between 0.01
and 0.04 m® m~3 using this approach to calibrate a Stevens Hydra
Probe (Stevens Water Monitoring Systems, Portland, OR) in a vari-
ety of soil textures. Spelman et al. (2013) reported errors of 0.01-
0.06 m®> m~3 for Decagon 10HS probes calibrated in four sandy
soils using this method. Sensors can also be calibrated in the field,
wherein the gravimetric water content and bulk density of field
soils are used to obtain volumetric water content and regressed
with sensor output. Ojo et al. (2015b) and (2015a) reported
improved sensor accuracies across multiple soils using in situ cali-
bration, compared with the sensor default calibrations, laboratory
calibrations, and other published calibrations.

While defining soil specific calibration equations based on
empirical relationships is reported to improve sensor accuracy,
individual lab calibration of many sensors prior to installation is

unrealistic, particularly for large sensor networks distributed
across heterogeneous soils. Furthermore, if field conditions are
not known or are not properly replicated in the lab, sensor perfor-
mance during lab calibration may not represent performance in the
field (Ojo et al., 2015b). Retroactive calibration of sensors in situ
using the thermogravimetric method requires repeated destructive
sampling, which negates the minimal disturbance benefits of using
in situ sensors, and manipulation of soil water content in the field
for sensor calibration can be difficult (Robinson, 2001). Ideally, we
would like to apply a calibration method to a large number of
installed sensors that accounts for site-specific soil characteristics
across a heterogeneous setting.

The objective of this study was to develop an appropriate
method for retroactive, sensor-specific calibration of a large num-
ber of soil water content sensors based on static, easily measured,
soil physical properties (e.g. texture and bulk density). We exam-
ined variations of a two-step calibration process: (1) conversion
of apparent dielectric permittivity to volumetric water content
using three calibration equations, and (2) re-calibration of volu-
metric water content based on estimates of soil saturation, field
capacity, and wilting point derived from two different pedotransfer
functions.

2. Materials and methods
2.1. Site description & data collection

The R.J. Cook Agronomy Farm (CAF) is a Long-Term Agroecosys-
tem Research site operated by Washington State University,
located near Pullman, Washington, USA (Fig. 1). The farm is
37ha in size, receives an average annual precipitation of
550 mm, primarily as winter snow and rain (Western Regional
Climate Center, 2013), and is representative of dryland annual
cropping systems (direct-seeded cereal grains and legume crops)
of the Inland Pacific Northwest. Deep silt loam soils (Palouse, Naff,
and Thatuna soil series) formed on loess hills are found at CAF,
with argillic silty clay loam horizons often occurring within
1.5m of the surface (Natural Resource Conservation Service,
2013). Long term water and tillage erosion from the steep slopes
of the region have resulted in drastic redistribution of topsoil hori-
zons and the exposure of clay rich subsoil layers, especially at soil
crest positions (USDA, 1978; Kok et al., 2009; Brooks et al., 2012).
The complex topography and soils of the Palouse region (including
CAF) lead to variable soil profile moisture regimes influenced by
watershed hydrology, microclimate, soil horizonation, cropping
system, and their interactions.

To capture soil moisture variability, soil moisture sensors were
installed throughout CAF from 2007 to 2009 and continue to oper-
ate today. In April 2007, we selected twelve geo-referenced loca-
tions from an existing non-aligned grid and installed ECH,O-TE
sensors (Decagon Devices, Inc., Pullman, WA) at five depths (0.3,
0.6, 0.9, 1.2, and 1.5 m) at each location. In June 2009, we installed
5TE sensors (an updated version of the ECH,O-TE; Decagon
Devices, Pullman, WA) at an additional 30 locations. At each loca-
tion, we excavated a small pit to insert the 0.3 m sensor horizon-
tally into undisturbed soil by hand; for the deeper sensors, we
used an auger to create a vertical hole of appropriate depth, then
inserted the sensor vertically into the undisturbed base of the hole
using a hollow steel pipe modified for positioning and inserting the
sensor. After placement, holes were re-filled and packed with soil.
The 42 instrumented locations (a total of 210 sensors) are dis-
tributed across the research farm to represent the variety of land-
scape and soil conditions (see Fig. 1). Since installation, sensors
have recorded volumetric water content (6sensor, m> m~>), soil tem-
perature (°C), and bulk electrical conductivity (dS m~!) hourly
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