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a b s t r a c t

Sugarcane is an important crop for tropical and sub-tropical countries. Like other crops, sugarcane agri-
cultural research and practice is becoming increasingly data intensive, with several modeling frameworks
developed to simulate biophysical processes in farming systems, all dependent on databases for accurate
predictions of crop production. We developed a computational environment to support experiments in
sugarcane agriculture and this article describes data acquisition, formatting, storage, and analysis. The
potential to support creation of new agricultural knowledge is demonstrated through joint analysis of
three experiments in sugarcane precision agriculture. Analysis of these case studies emphasizes spatial
and temporal variations in soil attributes, sugarcane quality, and sugarcane yield. The developed compu-
tational framework will aid data-driven advances in sugarcane agricultural research.

� 2016 Elsevier B.V. All rights reserved.

1. Introduction

Sugarcane is an important crop mainly in tropical and sub-
tropical countries. Brazil is the largest sugarcane producer, with
9 Mha cultivated to produce 659 million Mg of sugarcane in the
2015/2016 season, resulting in 34,600 Mg of sugar and 29 billion
L of ethanol (CONAB, 2015). In addition to sugar and ethanol, Brazil
is today the country with the largest installed capacity of biomass-
based electricity generation (IRENA, 2015). In 2015, the supply of
electricity from biomass had estimated growth of 7%, with a total
generation over 22 TW h, where sugarcane accounts for 80%.

Several modeling frameworks such as AUSCANE, QCANE,
APSIM, MOSICAS and CANEGRO (Marin et al., 2011) are increas-
ingly being employed to simulate biophysical process in sugarcane
farming systems. They are all dependent on databases, exemplify-
ing the many ways in which agriculture is moving towards inten-
sive data acquisition and processing. In addition, agriculture
worldwide is witnessing a growing adoption of the so-called

Precision Agriculture (PA), which comprises a set of tools to help
farmers understand and manage soils and crops inherent spatial
and temporal variability. PA relies on collection, analysis, process-
ing, and synthesis of voluminous georeferenced data, which can be
collected from a number of different technologies (Zamykal and
Everingham, 2009). Research and technology on PA have advanced
considerably in the past 20 years (Bramley, 2009). Due to its
intense use of information, PA has grown and evolved to incorpo-
rate the best of multidisciplinary science and technology (Zamykal
and Everingham, 2009), requiring farmers to look at their business
from different perspectives (Srinivasan, 2006).

Sugarcane production system, however, differs substantially
from major staple crops, affecting development and adoption of
agricultural technologies. Comparison between a major cereal
(e.g., wheat) and sugarcane highlights some key differences. Wheat
area worldwide is 215 Mha, primarily in temperate zones, com-
pared to 26 Mha of sugarcane, primarily in tropical developing
countries, especially in Brazil. Furthermore, the harvested part of
cereal crops is the grain, withmean yields of 3.2 Mg ha�1 for wheat,
compared to 71 Mg ha�1 for harvesting the stalks of sugarcane in
2013 (FAO, 2015). Differences in area and location make sugarcane
a small fraction of the global market for agricultural technology. In
addition, the high tonnage of sugarcane requires dedicated
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technologies, such as tailored yield monitors (Magalhães and Cerri,
2007). Due to specificities of the sugarcane system, and despite
rapid adoption of auto-steer in tractors and harvesters (Bramley
and Trengove, 2013; Silva et al., 2011), PA is not yet adopted by
the sugarcane-based sugar-ethanol industry as it is for other agri-
cultural systems (Gebbers and Adamchuk, 2010). According to sur-
veys conducted in Brazil (Anselmi et al., 2014; Avanzi et al., 2014;
Silva et al., 2011) and Australia (Bramley and Trengove, 2013),
low PA adoption can be explained by four factors: relative advan-
tage (usefulness), compatibility, trialability and observability. For
sugarcane production, perceived usefulness is correlated with
increased crop yield, reduced costs, and improved management.
On the other hand, high costs of equipment, lack of qualified staff
and lack of information on PA technologies were pointed by sugar-
cane farmers as the main barriers (Silva et al., 2011).

In this context, efforts have been primarily dedicated to exper-
iments aiming at establishing the scientific grounds and demon-
strating the advantages of PA techniques applied to sugarcane
(Portz et al., 2011; Rodrigues et al., 2012). Because of these goals,
characterization of soil and plant attributes in experiments is much
more comprehensive than the expected for large-scale PA practice.
Furthermore, testing data acquisition technologies and contextual-
izing their outputs are important goals of the experimentation
stage. Considering the above, treating the diversity of measurable
attributes is a critical point in experimentation for sugarcane PA.

The data-driven character of PA has attracted the attention of
the research community from many different areas. For instance,
there are studies on clustering algorithm to delineate management
zones (Tagarakis et al., 2012), data acquisition techniques with
remote sensing (Mulla, 2013; Song et al., 2009), and software
architecture for data analysis and integration of sensor based PA
monitoring (Chen et al., 2015).

In this work, we present a computational environment created
to support sugarcane agricultural research, including but not lim-
ited to research in PA. Data acquisition, formatting, verification,
storage, and analysis are discussed. To demonstrate the applicabil-
ity of the computational environment, data of soil chemistry, sug-
arcane quality, and sugarcane yield from three experiments are
jointly analyzed and discussed.

2. Computational environment

2.1. Handling of raw data

Sugarcane agricultural experiments may include several
sources of raw data, including data acquired by different analytical
laboratories and by various types of sensors. The current version of
the computational environment is able to process data in matrix
formats. Processing of images (e.g., from unmanned aerial vehicles
and satellite) is foreseen as a future upgrade for the system.

The database has an expandable set of allowed matrix formats –
essentially one matrix format for each type of measurement. To
assure that matrixes are properly recorded in the database, we rou-
tinely handle raw data following the tasks presented in Fig. 1.

Using spreadsheets, raw data from sensors and laboratory files
are converted into data matrixes consistent with the predefined
database formats. Such data matrixes are verified and then
inserted into the database. Importantly, data acquisition and for-
matting are performed by agricultural field scientist, while verifi-
cation and insertion are performed by computational workers.
Among other advantages, this division of tasks assures an indepen-
dent verification of data veracity. Verifications include matrix for-
mats, measurement units, and typical range of values acceptable
for a certain measured attribute. Once verified, data matrixes are
inserted into the database using python-generated SQL scripts.

2.2. Database

A relational database for sugarcane agricultural experiments
was created and named BDAgro – CTBE Database of Agricultural
Experiments, as detailed in a Technical Memorandum (Pontes
et al., 2014). BDAgro was constructed having PostgreSQL as rela-
tional database management system and pgAdmin as database
administration and development platform.

BDAgro conceptual model, i.e. entity-relationship model
(Elmasri and Navathe, 2010), includes entities associated to man-
agement and responsibilities (e.g., records of projects and responsi-
ble persons). Nevertheless, more relevant for the analytical
purposes of the computational environment, BDAgro represents
agricultural experiments through the following entities:

� Experiment is defined by a certain land area during a certain
period of time. The land area is most often an open agricultural
field, but may also be inside close environments such as
greenhouses.

� Event is one important fact within one experiment. Events may
be of three types: (i) intervention, associated with change in
experimental land area (e.g., harvest, soil fertilization); (ii) char-
acterization, associated with data acquisition without change in
land area (e.g., characterization of soil attributes); and (iii) plan-
ning, representing a record associated with neither physical
change in land area nor new data acquisition (e.g., nutrient
prescription).

� Static data is data generated by events. It is termed static
because each event is defined at a specific moment within
one experiment. Static data has x and y spatial coordinates as
attributes. Additional attributes depend on type of static data
(i.e., on type of measurements). Soil attributes, sugarcane qual-
ity, and sugarcane yield are examples of types of static data.

� Dynamic data is data acquired continuously during the course
of one experiment. Meteorological information is one example
of dynamic data.

We will refer to these entities as the article follows. However,
the analysis of the case studies does not yet include any dynamic
data because of the complexity of agricultural analysis using fine
temporal granularity.

2.3. Data analysis

We adopted the Work-Event-Data-flow (WED-flow) approach
(Ferreira et al., 2010) as the methodology for modeling analysis

Fig. 1. Tasks for handling of raw data prior to insertion into the database.
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