
Original papers

Mapping almond orchard canopy volume, flowers, fruit and yield using
lidar and vision sensors

James P. Underwood ⇑, Calvin Hung, Brett Whelan, Salah Sukkarieh
Australian Centre for Field Robotics, The University of Sydney, NSW 2006, Australia

a r t i c l e i n f o

Article history:
Received 15 April 2016
Received in revised form 20 September
2016
Accepted 24 September 2016

Keywords:
Robotics
Sensing
Machine vision
Lidar
Multi-sensor fusion
Orchard yield mapping

a b s t r a c t

This paper present a mobile terrestrial scanning system for almond orchards, that is able to efficiently
map flower and fruit distributions and to estimate and predict yield for individual trees. A mobile robotic
ground vehicle scans the orchard while logging data from on-board lidar and camera sensors. An auto-
mated software pipeline processes the data offline, to produce a 3D map of the orchard and to automat-
ically detect each tree within that map, including correct associations for the same trees seen on prior
occasions. Colour images are also associated to each tree, leading to a database of images and canopy
models, at different times throughout the season and spanning multiple years. A canopy volume measure
is derived from the 3D models, and classification is performed on the images to estimate flower and fruit
density. These measures were compared to individual tree harvest weights to assess the relationship to
yield. A block of approximately 580 trees was scanned at peak bloom, fruit-set and just before harvest for
two subsequent years, with up to 50 trees individually harvested for comparison. Lidar canopy volume
had the strongest linear relationship to yield with R2 ¼ 0:77 for 39 tree samples spanning two years.
An additional experiment was performed using hand-held photography and image processing to measure
fruit density, which exhibited similar performance (R2 ¼ 0:71). Flower density measurements were not
strongly related to yield, however, the maps show clear differentiation between almond varieties and
may be useful for other studies.

� 2016 Elsevier B.V. All rights reserved.

1. Introduction

Technological improvements in sensing, computing, algorithms
and robotics have the potential to increase productivity for com-
mercial farming and efficiency for plant science. For farmers,
mobile data gathering systems can provide detailed information
to assist their decision making and management processes and
the information can plug into decision support software that is
capable of recommending particular actions. Eventually it will be
possible for these actions to be directly applied using mobile field
robotics technology. For plant scientists, mobile data systems can
provide high throughput, in-field plant phenomics. This will allow
greater capacity for in-field experimentation, where manual labour
for in-field data acquisition is currently a limiting factor, leading to
yield improvements from genomics and improvements to best-
practice for growers.

This paper presents a robotic ground-vehicle information sys-
tem for almond orchard mapping and per-tree yield estimation.

The system continuously records data from a camera and lidar sen-
sor, while the vehicle drives through the orchard. This is combined
with processing software that automatically extracts geometric
and visual information of each tree and matches the data from
scans taken at different times of the year and over multiple sea-
sons. This allows the assessment of flowering and fruit production
per individual tree, in a manner that is efficient for scanning whole
orchard blocks. This represents a significant increase in resolution
compared to the typical practice of weighing the total produce har-
vested from whole orchard blocks, allowing the variability
between individual trees and smaller regions of the orchard to be
estimated and mapped.

Three dimensional and image-based sensing have been applied
to many aspects of tree-crop precision agriculture. There are many
examples of the use of lidar to measure tree canopy geometry
(Tumbo et al., 2002; Walklate et al., 2002; Rosell et al., 2009;
Rosell and Sanzs, 2012; Wellington and Campoy, 2012; Escolà
et al., 2015) and as a proxy for related measurements such as
leaf-area-index (Sanz et al., 2013). Alternative range sensors have
also been used including ultrasound (Tumbo et al., 2002;
Hosainpour et al., 2013), structured light (Rosell-Polo et al., 2015)
and stereo vision Rosell and Sanzs (2012), but lidar is popular given
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the relatively high accuracy and invariance under natural illumina-
tion conditions.

Vision sensors have been coupled with machine vision algo-
rithms to estimate fruit and flower densities for individual trees
for a number of different crop types (Gongal et al., 2015). Hand-
held digital cameras and relatively simple image classification
algorithms have been used to estimate flower densities
(Adamsen et al., 2000; Aggelopoulou et al., 2011; Thorp and
Dierig, 2011); relatively simple algorithms are possible due to
the typically high colour contrast exhibited by flowers. Machine
vision cameras have also been mounted on tractors to improve
the image acquisition process (Hočevar et al., 2014), which allowed
flower estimation on larger numbers of trees (N = 136). Neverthe-
less, the process requires manual demarcation of the individual
trees within the frames, which limits the efficiency when scaling
up to scan entire commercial orchard blocks. Unlike flowers, fruit
and nuts are often visually similar to the leaves and surrounding
foliage of trees, meaning that more sophisticated machine vision
methods are required to automatically detect them. These include
artificial neural networks (Gongal et al., 2015; Hung et al., 2013,
2015; Bargoti and Underwood, 2016a,b), which have the advantage
of automatically learning appropriate feature descriptions for clas-
sification from the data; multi-sensor fusion, which simplifies the
classification problem by fusing data from complementary sensors
such as vision and thermal cameras (Bulanon et al., 2009) or vision
and near-infra-red cameras (Hung et al., 2013); and hybrid
approaches that combine colour and shape (Singh et al., 2010;
Nuske et al., 2011; Wang et al., 2013). Cameras have also been
combined with lidar for tree-crop applications, such as Shalal
et al. (2015) and Bargoti et al. (2015), which both address tree
trunk detection by combining the geometry sensed by the laser
with the visual appearance sensed by the camera.

The size of almond trees is known to be an important factor in
estimating the yield (Hill et al., 1987), which motivates canopy
geometry sensing. Flower densities are also considered to be rele-
vant to yield, although the relationship is complicated by variabil-
ity in pollination (e.g. availability of pollinators) and other
limitations in how much fruit the tree can bare Dicenta et al.
(2005). The potential utility of flower density mapping, as well
potentially being able to directly measure fruit density motivates
the use of vision.

In order to allow all of these methods to scale up to entire orch-
ards, automated, streamlined data management is also required,
which includes software for tree segmentation and detection
(Wellington and Campoy, 2012; Shalal et al., 2015; Bargoti et al.,
2015; Underwood et al., 2015b) and tree matching (correct data
to tree assignment) for repeated scans at different times
(Underwood et al., 2015b). There are few whole-system examples
that combine geometric and visual sensing, together with efficient
mobile data acquisition and automated data processing and man-
agement steps that facilitate entire blocks of commercial farms
to be efficiently scanned, including comparisons to ground truth
yield such as fruit counts or harvest weights. Prominent examples
include holistic systems for ground crops (Busemeyer et al., 2013),
vineyards (Nuske et al., 2014) and apple orchards (Hung et al.,
2015). Each of these systems relies on constraints relating to the
specific nature of the target crop and no one system and approach
is likely to be adaptable to vastly different crop types. The geome-
try of ground based crops is well suited to systems that straddle
above the crop (Busemeyer et al., 2013; Deery et al., 2014;
Underwood et al., 2015a), which enables controlled illumination
and provides for an ideal sensor vantage point, but those systems
are not applicable to tree crops, which are taller and difficult to
straddle. Amongst tree crop applications, algorithms are typically
tailored to the appearance and geometry of the specific fruit such
as circle detection for apples in Hung et al. (2015) and a customised

grape berry detection method in Nuske et al. (2014). Algorithms
are also tailored to the orchard configuration, such as the two
dimensional trellis fruit wall in Hung et al. (2015), which avoids
the need for individual tree segmentation for image masking,
which is a key component of our system.

Although several of the components that are necessary for an
almond orchard scanning system have been explored in the litera-
ture (including the authors’ prior work and others), the contribu-
tion of this paper is to develop an integrated methodology to
create a single, efficient orchard scanning system for almonds.
The contribution is the complete system, including the necessary
developments to combine the components of tree detection and
segmentation with flower and fruit mapping and yield estimation,
together with experimentation covering approximately 580 trees
at three times of season for two years.

2. Materials and methods

A 2:3-hectare block of a commercial almond orchard was
scanned using the ‘‘Shrimp” ground vehicle robot, three times
per year (flowering, fruit-set, pre-harvest) for two subsequent
years. At harvest, individual trees were also photographed with a
hand-held digital camera and then selectively harvested and
weighed. The colour images and lidar from the robot and the man-
ually taken photographs were post-processed, using custom algo-
rithms and software, to derive measures relating to the canopy
volume and the density of flowers and fruit on each tree. The
measures were compared with the selective harvest weights, to
quantify performance. This section describes the system and
sensors, the protocol for data collection, and how the data were
processed.

2.1. The ‘‘Shrimp” mobile robot

The ‘‘Shrimp” mobile ground vehicle robot was designed and
built at the Australian Centre for Field Robotics at the University
of Sydney in 2009 (see Fig. 1(a)) as a general purpose research plat-
form to study robotic sensing and perception. For this application,
we use a subset of sensors: a 2D line scanning lidar (SICK LMS-291)
and a machine vision camera (Point Grey Ladybug2, single two
mega-pixel camera, with natural illumination only), both face to
the right to scan the trees as the vehicle travels continuously for-
wards at up to 2 m/s (see Fig. 1(b)). A real time kinematic global
positioning inertial navigation system (Novatel SPAN RTK
GPS/INS) is used for positioning, a gamma radiometer (RS700)
was mounted on-board to record passive soil gamma emissions
and an electromagnetic induction instrument (EM38) is towed
behind the vehicle to measure apparent soil electrical conductivity
(ECa). The system includes a computer for data logging.

2.2. Data collection

All data were obtained from a 2.3-hectare section of Lake Cul-
lulleraine Almonds, in Victoria, Australia, shown in Fig. 2. The area
includes 10 rows spaced 7.35 m apart and roughly 313.5 m long,
with 58 trees per row spaced at 5.5 m. The primary variety in every
second row is Nonpareil, with alternating Carmel and Monterey
pollinator rows between. Datasets were collected at peak bloom
(as estimated by the farm manager), at fruit-set and just prior to
harvest, for both the 2014 and 2015 harvest seasons. Several data-
sets were taken on subsequent days to assess repeatability. All
datasets are summarised in Table 1.

To obtain each dataset, the raw data from all sensors were
logged continuously, while the vehicle is driven by a remote oper-
ator up and back down the rows at speeds of 1–2 m/s depending on
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