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a  b  s  t  r  a  c  t

In dendroclimatology,  testing  the  stability  of  transfer  functions  using  cross-calibration  verification  (CCV)
statistics  is  a  common  procedure.  However,  the  frequently  used  statistics  reduction  of  error  (RE)  and
coefficient  of efficiency  (CE)  merely  assess  the skill  of  reconstruction  for  the  validation  period,  which  does
not necessarily  reflect  possibly  instable  regression  parameters.  Furthermore,  the  frequently  used  rigorous
threshold  of zero  which  sharply  distinguishes  between  valid  and invalid  transfer  functions  is prone  to
an underestimation  of  instability.  To  overcome  these  drawbacks,  we  here  introduce  a new  approach  –
the Bootstrapped  Transfer  Function  Stability  test  (BTFS).  BTFS  relies  on bootstrapped  estimates  of  the
change  of  model  parameters  (intercept,  slope,  and  r2) between  calibration  and  verification  period  as well
as the  bootstrapped  significance  of  corresponding  models.  A  comparison  of BTFS,  CCV  and  a bootstrapped
CCV  approach  (BCCV)  applied  to 42,000  pseudo-proxy  datasets  with  known  properties  revealed  that  BTFS
responded  more  sensitively  to instability  compared  to  CCV  and  BCCV.  BTFS  performance  was  significantly
affected  by  sample  size  (length  of  calibration  period)  and  noise  (explained  variance  between  predictor
and predictand).  Nevertheless,  BTFS  performed  superior  with  respect  to  the  detection  of  instable  transfer
functions  in  comparison  to  CCV.

©  2017  Elsevier  GmbH.  All  rights  reserved.

1. Introduction

Transfer functions process a time-varying signal – a proxy – to
yield another signal of estimates (Sachs, 1977). In dendroclimatol-
ogy, the proxy is a tree-ring parameter, such as density or width,
and the estimate a parameter of past climate, such as temperature
or precipitation. Estimating the reliability of these transfer func-
tions is a common and mandatory aspect of dendroclimatological
reconstructions (e.g. Fritts, 1976; Cook and Kairiukstis, 1990). For
this purpose, the so-called cross-calibration-verification (CCV) is
frequently considered (Fritts, 1976; Cook et al., 1994). In CCV, a
transfer function – e.g. the frequently used ordinary least-squares
regression (OLS) – is computed for a calibration period (for instance
half the period of available calibration data) and then applied
to predict the target quantity (e.g. temperature) for the respec-

Abbreviations: BTFS, Bootstrapped Transfer Function Stability test; BCCV, boot-
strapped cross calibration verification; CCV, cross calibration verification; CE,
coefficient of efficiency; ECDF, empirical cumulative distribution function; OLS, ordi-
nary  least-squares regression; RE, reduction of error.
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tive remaining period (the verification period). Subsequently, this
procedure is repeated with swapped calibration and verification
periods. For both calibration-verification sets the reduction of error
(RE) and the coefficient of efficiency (CE) are calculated:

RE = 1 −
∑n
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with:

- xi being the measured target variable and x̂i being the predicted
target variable for i = 1,. . .,n,

- x̄c being the mean of the target variable for the calibration period,
- x̄v being the mean of the target variable for the verification period,
- and positive CE and RE values indicating predictive skills greater

than those of the respective null models (mean value of target
quantity, i.e. the climatology of the calibration period for RE, cli-
matology of the verification period for CE). In these cases, transfer
functions are considered stable (Cook et al., 1994).
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Accordingly, CE and RE focus on the residuals and predictive
skill of models in the verification period. While this is an important
aspect of transfer functions, the stability of regression parameters
such as intercept, slope, and explained variance is only indirectly
accounted for. That is, if one or several model parameters vary
largely, the residuals of the prediction will be larger than those
of the null model, this resulting in negative RE and CE values. How-
ever, for low variations of regression parameters, this may  not be
the case. Moreover, both metrics introduce a sharp threshold of 0
for classifying transfer functions as invalid (CE and RE ≤ 0) or valid
(CE and RE > 0). However, this threshold neglects that both positive
and negative CE and RE values close to zero indicate residuals in
the same order as the null model, i.e. low predictive power. Thus,
as long as the residuals of the reconstruction are lower than those
of the respective null model, transfer functions will pass CCV, irre-
spective of the stability of regression parameters. Consequently,
diverging climate-growth relationships – which are important to
identify when reconstructing climate – may  be overlooked if stabil-
ity assessments are only based on CCV. Furthermore, CCV is known
to be sensitive against outliers (Cook et al., 1994), thus may  classify
stable transfer functions invalid due to outliers in the calibration
or verification period. Finally, since there is no parametric signif-
icance test for CE and RE available (Cook et al., 1994), stability
assessments based on CE or RE traditionally cannot estimate the
probability of obtaining false positives (i.e. type I error). One pos-
sibility to handle this drawback is the application of bootstrapping
techniques to generate a distribution of RE and CE estimates (e.g.
Wahl and Smerdon, 2012). The focus on predictive skills in con-
trast to stability of model parameters, however, remains true also
for bootstrapped variants of CCV.

To overcome this drawback, we propose a new approach – the
Bootstrapped Transfer Function Stability test (BTFS) – which aims at
quantifying the stability and significance of transfer functions over
time. In the following, BTFS is tested for a large variety of pseudo-
proxies with known stability/instability and compared to CCV and
a bootstrapped CCV.

2. Material and methods

2.1. Bootstrapped Transfer Function Stability test

Since the general intention of our approach is to test the stabil-
ity of transfer functions over time, ordinary least squares linear
regressions (OLS) are computed for two periods each covering
50% of the period with available calibration data. Other regres-
sion methods such as inverse OLS or reduced major axis models
(RMA) can be applied to BTFS, too, but for reasons of simplic-
ity we here focus on the frequently used OLS approach. For each
of the two regressions, model intercept (a), model slope (b), and
explained variance (r2) are extracted and the respective parameter
ratios calculated. Accordingly, parameter ratios of one indicate per-
fect stability of the respective model parameter. Bootstrapping is
used to get robust estimates of model parameter ratios for a prede-
fined number of iterations i (here: i = 1000). That is, the two  periods
are each randomly subsampled i times allowing for replacements
and the corresponding models are computed to derive i ratio esti-
mates of a, b, and r2. Empirical cumulative distribution functions
(ECDFs) are derived from the i estimates of each parameter and
used to compute the 95% confidence interval of bootstrapped esti-
mates. If this confidence interval does not contain the ratio 1, the
respective parameter is considered instable. In other words, based
on the ECDFs, BTFS tests the null-hypothesis that the observed
ECDF could have been obtained if the true parameter ratio was one.
Accordingly, if the associated probability is lower than 0.05, the

true parameter ratio is unlikely to be one wherefore BTFS rejects a
transfer function as instable.

In addition to these three parameters, the proposed approach
also computes regression p-values for the bootstrapped periods.
Consequently, for each period i estimates of the true p-value are
obtained. For each iteration the maximum – thus least significant
– p-value is extracted and the proportion of significant regressions
(p < 0.05) is reported. If this proportion is below 0.05, a transfer
function is considered invalid as regressions for at least one of the
two periods frequently were non-significant. To account for dif-
ferent aspects of instability, the proposed approach comprises all
four bootstrapped statistics (i.e. slope, intercept, r2, and signifi-
cance) in one assessment. If one of these statistics is significant,
a transfer function is considered invalid. Being based on these four
parameters, this approach covers several possibilities of transfer
function instability. That is, if model parameters (slope, intercept,
r2) or model significance vary significantly over time this will be
identified by the proposed approach. As testing transfer function
stability and being based on bootstrapping we call this approach
the Bootstrapped Transfer Function Stability test (BTFS).

2.2. Data

To validate BTFS and compare it to the commonly applied
CCV and a bootstrapped CCV approach, we  ran 42,000 pseudo-
proxy experiments. To generate pseudo-proxies, we used a
tree-ring dataset downloaded from the International Tree-Ring
Data-Base (ITRDB; https://www.ncdc.noaa.gov/paleo/study/6344,
Wilson et al., 2007). This data-set contains 15 tree-ring chronolo-
gies distributed around the Northern hemisphere, thus in our
opinion represents a broad variety of tree-ring characteristics
world-wide. We  used these data to generate 42,000 pseudo-proxy
data-sets. That is, for each set a randomly subsampled sequence
of predefined length (specifications are given below) of a ran-
domly selected tree-ring chronology was defined as predictor (in
dendroclimatological transfer-functions the tree-ring parameter),
whereas the predictand (climate parameter) was defined as pre-
dictor multiplied by 1.5 (the slope) and added by 1 (the intercept).
Introducing slope and intercept to the pseudo-proxies was done to
create more realistic conditions (i.e. slope and intercept not being
zero) but this will not affect the performance of BTFS or CCV.

Subsequently, white noise (i.e. randomly generated values hav-
ing no auto-correlation, zero mean, and not being correlated to the
noiseless variable itself, see e.g. Kutzbach et al., 2011) was added
to the predictand. Thereby a variable was obtained that – depend-
ing on the standard deviation of the added noise (specifications
below) – was  more or less correlated with the predictor. Based
on this definition, the relationship between predictor and predic-
tand is stable over time. To generate scenarios representative of
instable transfer functions, the predictor was modified either by I)
including a non-linearly increasing trend along the time-series, i.e.
temporally increasing deviation among predictor and predictand
or II) by non-linearly increasing the noise intensity along the time-
series, i.e. a temporal weakening of the correlation among predictor
and predictand. For each scenario, instability was represented by
six different levels ranging from no instability to strong instability.
Scenarios related to I) and II) in the following also will be termed
‘trend-scenarios’ and ‘noise-scenarios’.

To represent different data qualities within a realistic range of
conditions, pseudo-proxy sets varied in temporal span (40, 60, 80,
100, 120; x-axis on Figs. 2 and 3 as well as Supplementary Figs.),
standard deviation of added noise (50, 60, 70, 80, 90, 100, and 110
percent of the predictand’s standard deviation, y-axis on Figs. 2 and
3 as well as Supplementary Figs.), and differing strengths of tem-
poral instability (ranging from no instability to strong instability
resolved in 6 levels; different panels on Figs. 2 and 3 as well as Sup-
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