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a b s t r a c t

National forest inventories have a long history of using remotely sensed auxiliary information to enhance
estimation of forest parameters. For this purpose, aerial photography and satellite spectral data have
been shown to be effective as sources of information in support of stratified estimators. These
spectral-based stratifications are much more effective for reducing variances for forest area-related
parameters than for parameters related to continuous attributes such as volume and biomass. For vari-
ables related to the latter attributes, stratified estimators using airborne laser scanning auxiliary data
are much more effective, but are less effective than model-assisted estimators using the same auxiliary
data. For inventory applications, however, stratified estimators using the same stratification for all
response variables are naturally multivariate, whereas model-assisted estimators are not. A consequence
is that multiple, univariate applications of model-assisted estimators cannot ensure compatibility among
estimates of inventory parameters related to variables such as forest area, growing stock volume, and tree
density.
The objectives of the study were twofold: (1) to optimize a multivariate, k-NN approach for simultane-

ously predicting multiple forest inventory variables; and (2) to compare multivariate model-assisted gen-
eralized regression estimators using optimized k-NN predictions to post-stratified estimators with
respect to inferences in the form of confidence intervals for multiple forest inventory parameters. The
analyses included use of airborne laser scanning data as auxiliary information and the multivariate k-
NN technique for prediction in support of the model-assisted estimators. The study area was in north
central Minnesota in the USA and is characterized by both lowland and upland forest types interspersed
with wetlands and lakes.
The first primary result was that the optimized k-NN technique in combination with a model-assisted

estimator produced compatible multivariate estimates of population means for six inventory parameters.
Second, variances for the multivariate model-assisted estimators were smaller by 23%–35% than vari-
ances for a post-stratified estimator. These results warrant serious consideration of this approach for
operational implementation by national forest inventories.
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1. Introduction

National forest inventories (NFI) in the Nordic countries and the
United States of America (USA) have a long history of using remo-
tely sensed auxiliary information to enhance inferences in the form
of confidence intervals for forest inventory parameters. Aerial pho-
tography served as the earliest source of remotely sensed informa-
tion for constructing stratifications for this purpose. Bickford
(1953, 1960) in the USA and Poso (1972) in Finland constructed
strata based on interpreted aerial photography to support stratified

estimation. More recently, satellite imagery has served as the
source of information for constructing stratifications. With this
approach, the imagery is classified with respect to a forest attribute
of interest, and the classes, or aggregations of the classes, serve as
strata (Poso et al., 1984, 1987; Hansen and Wendt, 2000;
McRoberts et al., 2002, 2006). McRoberts et al. (2012) provide more
details on the history of using aerial photography and satellite ima-
gery to support stratified estimators for forest inventory applica-
tions. Although stratifications based on aerial photography and
satellite imagery have been shown to be effective for increasing
the precision of estimators of forest area, their effectiveness for
attributes such as growing stock volume and biomass is consider-
ably less (McRoberts et al., 2006).
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The advent of airborne laser scanning (ALS) data has introduced
new possibilities for using remotely sensed auxiliary information
to increase the precision of estimators of parameters related to for-
est volume and biomass. Næsset (2002) reported that 80–93% of
the variability in field measured forest volume could be explained
by models that use ALS metrics, and Næsset and Gobakken (2008)
reported that 88% of the variability in aboveground biomass could
be explained with models using similar metrics. These results have
been confirmed in multiple additional studies (Li et al., 2008; Zhao
et al., 2009; Frazer et al., 2011). McRoberts et al. (2012, 2013)
demonstrated that ALS-based stratifications increase precision for
estimators of growing stock volume comparable to the increases
satellite image-based stratifications produce for forest area. How-
ever, for continuous forest attributes such as growing stock vol-
ume, model-assisted estimators using ALS data increase precision
by even more than stratified estimators (McRoberts et al., 2013).
With model-assisted estimators, an initial estimate based on
model predictions for all population units is adjusted using differ-
ences between sample unit observations and predictions to com-
pensate for systematic prediction error.

For operational purposes, NFIs require compatibility among esti-
mates of parameters for different attributes. For example, for a par-
ticular estimation unit, a small estimate of forest area should not
accompany a large estimate of growing stock volume. Such prob-
lems do not arise with stratified estimators using the same stratifi-
cation because the stratifications only provide weights which are
applied equally to observations for all response variables. Model-
assisted estimators, on the other hand, require predictions for all
response variables for all population units, and if amultivariate pre-
diction approach is not used, then inevitably incompatible predic-
tions such as large growing stock volume for a population unit
that is predicted to have no forest cover will occur.

Multivariate regression methods typically require multivariate
normally distributed response variables, a condition that is seldom
satisfied for forest inventory variables. An alternative that has
become very popular for use with remotely sensed data for forest
inventory applications is the multivariate, non-parametric k-
Nearest Neighbors (k-NN) technique (Chirici et al., 2016). Among
the reported multivariate applications of k-NN, Temesgen et al.
(2003) and LeMay and Temesgen (2005) predicted basal area and
tree density using variables that included crown closure, height,
age and ecological zone. McRoberts et al. (2007) and McRoberts
(2009) predicted basal area, tree density and volume using Landsat
metrics and used model-based inference to estimate small area
means and their standard errors. Nothdurft et al. (2009) and
Breidenbach et al. (2010) predicted total and three species-
specific timber volumes for stands using ALS and optical data.
Dash et al. (2015) predicted basal area, tree density, volume, and
height using lidar metrics and estimated stand-level means and
standard errors using the same approach to model-based infer-
ence. These studies established the utility of k-NN for multivariate
prediction and for small area, model-based inference. However,
none of these studies focused on larger areas on the order of inven-
tory reporting units that are amenable to probability-based
(design-based) inferential methods.

The objectives of the study were twofold: (1) to optimize a mul-
tivariate, k-NN approach for simultaneously predicting multiple
forest inventory variables; and (2) to compare multivariate
model-assisted generalized regression (GREG) estimators using
optimized k-NN predictions to post-stratified (STR) estimators
with respect to inferences in the form of confidence intervals for
multiple forest inventory parameters. For both the stratified and
model-assisted estimators, the auxiliary information was in the
form of metrics derived from ALS data. The study area was in north
central Minnesota in the USA and is characterized by both lowland
and upland forest areas interspersed with wetlands and lakes.

2. Data

2.1. Study area

The 7583-km2 study area consisted of the entirety of Itasca
County in north central Minnesota in the USA (Fig. 1). Land cover
includes water, wetlands and forest consisting of uplands with
deciduous mixtures of pines (Pinus spp.), spruce (Picea spp.), and
balsam fir (Abies balsamea (L.) Mill.) and lowlands with spruce
(Picea spp.), tamarack (Larix laricina (Du Roi) K. Koch), white cedar
(Thuja occidentalis (L.)), and black ash (Fraxinus nigra Marsh.).

2.2. Forest inventory data

Data were obtained for plots established by the Forest Inventory
and Analysis (FIA) program of the U.S. Forest Service which con-
ducts the NFI of the USA. The FIA program has established field plot
centers in permanent locations using a systematic unaligned sam-
pling design that is regarded as producing an equal probability
sample (McRoberts et al., 2010). The entire array of plots for Min-
nesota is subdivided into five systematic interpenetrating panels,
and one panel is selected on a rotating basis for measurement each
year. Each FIA plot consists of four 7.32-m (24-ft) radius circular
subplots that are configured as a central subplot and three periph-
eral subplots with centers located at 36.58 m (120 ft) and azimuths
of 0�, 120�, and 240� from the center of the central subplot. Field
crews visually estimate the proportion of each subplot that satis-
fies the FIA definition of forest land: (i) minimum area 0.4 ha (1.0
ac), (ii) minimum tree cover of 10%, (iii) minimum width of
36.58 m (120 ft), and (iv) forest land use. For plots on forest land,
field crews also observe species and measure diameter at breast-
height (dbh, 1.37 m, 4.5 ft) and height for all trees with dbh of at
least 12.7 cm (5 in.) on each subplot. Allometric model predictions
of individual tree stem volumes are aggregated at subplot-level.
For this study, uncertainty associated with the allometric model
predictions was ignored. Species-level specific gravities are used
to convert tree volumes to aboveground live tree stem biomass.
Subplot-level response variables for this study included proportion
forest area (A), basal area (BA, m2/ha), growing stock volume (V,
m3/ha), aboveground live tree stem biomass (AGB, Mg/ha), tree
density (D, stems/ha), and mean live tree height (HT, m).

Data were used for only the central subplots of the 242 plots
measured in 2014 and 2015, because these were the only subplots
and years for which plot coordinates were obtained using survey
grade GPS receivers with sub-meter accuracy. For further refer-
ence, use of the term plot refers to the central subplot.

2.3. Airborne laser scanning data

Wall-to-wall ALS data were acquired in April 2012 with a nom-
inal pulse density of 0.67 pulses/m2. Ground returns were classi-
fied by the provider and were used to construct a digital terrain
model via interpolation using the Tiffs (Toolbox for Lidar Data Fil-
tering and Forest Studies) software (Chen, 2007). For this study
that uses relatively small plots and ALS data characterized by small
pulse densities, all pulse returns were used.

Distributions of all pulse return heights were constructed for
the 168.3-m2 plots and for the 169-m2 square cells that tessellated
the study area and served as population units. ALS metrics for each
plot and cell included the mean (hmn), standard deviation (hsd),
skewness (hsk), kurtosis (hku), and quadratic mean height (hqm) of
the distributions of heights for all pulse returns (Lefsky et al.,
1999; Chen et al., 2012). In addition, heights corresponding to
the 10th, 20th, . . ., 100th percentiles (h10, h20, . . ., h100) of the dis-
tributions were calculated as were canopy densities expressed as
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