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1. Introduction

The p-center problem (see, for example, [1]), also known as the
minimax location--allocation problem, deals with the optimal loca-
tion of emergency facilities. The locations of n demand points are
given, and we need to locate p service facilities. The value of a can-
didate solution to the p-center problem is the maximum distance
between a demand point to its nearest service facility. Our objective
is to find the solution with the minimal value; we want to locate the
service facilities so as to minimize the maximum distance between a
demand point to its nearest service facility. It is assumed that all the
facilities perform the same kind of service, and that the number of
demand points that can get service from a given center is unlimited.

Relaxation (in the context of this paper) [1,2] is a method to
optimally solve a large location problem by solving a succession of
small sub-problems. It is an iterative algorithm which updates, at
each step, bounds on the optimal solution, until the optimal solution
is reached. This paper presents new relaxation algorithms for the
p-center problem.

Every step of a relaxation algorithm involves solving a p-center-
like problem on a subset of the demand points. Our input is the
subset and a value r, which is called the coverage distance. We need
to answer: "Is there a solution to the sub-problem with value less
than r?''.

The new relaxation algorithms we describe try to reduce the
number of iterations, or reduce the sizes of sub-problems, or reduce
the values of the coverage distances (or a combination of these fac-
tors), so that we can improve performance, and therefore solve larger
problems to optimality.
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There are two main variants of the p-center problem in the lit-
erature; they differ by the possible location of the service points.
Many authors deal with the continuous problem in which the points
to be located optimally can be anywhere in the plane, but another
interesting problem is the discrete case where there is a finite set of
potential points (xj, yj) out of which one wishes to find the points
which fulfill the minimax condition. In some cases, weights wi are
associated with the service points (ai, bi). Another classification of
the problems is associated with the relevant metrics. In many cases,
the distances between demand and service points are Euclidean (e.g.,
[3]). Also considered are problems where the distances are defined
by minimal distances on a graph; this variant was first solved by
Minieka [4].

The formulation of the Euclidean unweighted p-center problem is

min
X1,...,Xp

{
max

1� i�n

[
min

1� j�p
rij

]}

where Xj = (xj, yj) for j = 1, . . . , p is the location of the new facil-

ity and rij = [(ai − xj)
2 + (bi − yj)

2]1/2. Megiddo and Supowit [5]
have shown that both the p-center and p-median problems are
NP-hard and that it is NP-hard even to approximate the p-center
problems sufficiently closely. On the other hand, Hochbaum [6] has
shown that given certain assumptions on the input distribution,
there are polynomial algorithms that deliver a solution asymptoti-
cally close to the optimum with probability that is asymptotically
one.

Most of the methods developed for solving the continuous Eu-
clidean problem are geometrical in nature. When we are looking for
a single service point (p=1), the solution of the problem will be the
center of the smallest circle enclosing n given points in the plane
(see e.g., [7]). This can occur in one of two ways. The smallest circle
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can be determined by three demand points on its circumference or,
alternatively, by two points on the two ends of a diameter. In the
former case, the three points are the edges of an acute triangle [8].
The geometrical methods are based on a sophisticated search for
the smallest enclosing circle among the circles built on subsets of
two and three demand points. This includes the repeated solution
of relaxed, smaller sub-problems as described below in the broader
context of the p-center problem.

Chen [9] suggested a method that enables both the solution of
the minisum and minimax location--allocation continuous problems
by using a differentiable approximation to the objective function and
solving it by using nonlinear programming. This enabled the solu-
tion of relatively large problems, but the result was not necessarily
optimal since local minima may have been reached. Drezner [3,10]
presented heuristic and optimal algorithms for the p-center prob-
lem in the plane. The heuristic method yielded results for problems
with up to n= 2000 and p= 10 whereas the optimal method solved
problems with up to n = 30, p = 5 or n = 40, p = 4. Watson-Gandy
[11] suggested an algorithm that can optimally solve problems with
up to about 50 demand points and 3 centers in reasonable time. The
p-center problem on networks has been solved by Minieka [4] and
by Toregas et al. [12]. A finite method, which is rather inefficient for
large problems was suggested. An improvement based on the use of
relaxations was offered by Handler and Mirchandani [1]. In Section
2 we elaborate on relaxation methods.

Some other papers dealing with the continuous p-center prob-
lem include the following. Hwang et al. [13] describe a slab-dividing
approach, which is expected to efficiently solve the Euclidean
p-center problem. These authors show that their algorithm has time
complexity of O(nO(

√
p)). Suzuki and Drezner [14] propose heuristic

procedures and upper bounds on the optimal solution where the
demand points are distributed on a square. One of the methods they
use employs the Voronoi heuristic. The same method has been re-
cently used by Wei et al. [15]; the authors explore the complexity of
solving the continuous space p-center problem in location planning.
Agarwal and Sharir [16] discuss efficient approximate algorithms for
problems in geometric optimization, which include the Euclidean p-
center in d dimensions. Hale and Moberg [17] give a broad review on
location problems, which includes the Euclidean p-center problem.

The discrete p-center problem is also known to be NP-hard [18].
For a review on discrete network location models see Current et
al. [19]. Daskin [20] presents an optimal algorithm which solves
the discrete p-center problem by performing a binary search over
possible solution values. This algorithm solves maximal covering
sub-problems, rather than the set-covering sub-problems solved by
Minieka [4]. Mladenović et al. [21] present a basic Variable Neigh-
borhood Search and two Tabu Search heuristics for the p-center
problem without the triangle equality. Elloumi et al. [22] present
a new integer linear programming formulation for the discrete
p-center problem and show how to use this new formulation to
obtain tight bounds on the optimal solution. They use these bounds
in an exact solution method and report very good computational
results. Recent works on the discrete problem include algorithms
given by Caruso et al. [23] and by Ilhan et al. [24]. The latter au-
thors describe an efficient exact method for the discrete p-center
problem. A tight lower bound to the optimal value is found in an
initial phase of the algorithm, which consists of solving linear pro-
gramming sub-problems. Good computational results are reported
for each of an extensive list of test problems derived from OR-Lib
and TSP-Lib problems with up to 900 data points.

We present new relaxation algorithms. We report excellent com-
putational results for both the continuous and discrete cases. We
solved problems taken from OR-Lib [25] and TSP-Lib [26].

The rest of the paper is structured as follows. Section 2 explains
the principles of relaxation and present new relaxation algorithms.

In Section 3we present the results of our experimental study. Section
4 contains conclusions and open problems.

2. Relaxation algorithms for the p-center problem

2.1. The p-center problem

The p-center problem, also known as the minimax location--
allocation problem, deals with the optimal location of emergency
facilities. We are given the locations of n demand points, and the ob-
jective is to locate p service facilities so as to minimize the maximum
distance between a demand point to its nearest service facility.

Here is an equivalent way of looking at the same problem: we are
given the locations of n demand points. We need to locate p circles
that will cover all of the demand points. Our objective is to minimize
the radius of the maximal circle. Clearly, this is exactly the p-center
problem, where the centers of the p circles are the locations of the
p service facilities.

Whenwe consider the second interpretation of the p-center prob-
lem, we say that a set of p circles is a feasible solution to the prob-
lem, if the circles cover all of the demand points. When we con-
sider the first interpretation, then any set of p points is considered a
feasible solution to the p-center problem. Whenever convenient, we
will alternate between the two equivalent definitions of the p-center
problem.

2.2. Theory

Relaxation is a simple method to optimally solve a large location
problem by solving a succession of small sub-problems. Although
one cannot know in advance how many sub-problems need to be
solved, once the global optimum is reached, it is identified as such.
This as opposed to some heuristic methods which usually yield local
minima. Though in the worst case relaxation may be very slow, it is
usually very efficient.

Chen and Handler [2] adapted the relaxation method, previously
suggested for the solution of location problems on networks [1],
to the problem in continuous Euclidean two-dimensional space. In
the solution of the p-center problem there is usually only one circle
which is critical in the sense that two or three demand points are
on its circumference. There is much freedom in the exact position
of the other circles and therefore, in the location of all but one of
the centers. The value of the solution is determined by the radius of
this critical circle, whereas the radii of the other circles may vary in
size below this critical value. Thus, the number of possible optimal
solutions is usually infinite. Chen and Handler [2] proved a theorem
stating that among all the optimal solutions to the minimax problem
of serving n demand points in Euclidean space by p service points,
there is at least one inwhich all demand points are covered by critical
circles, the largest of which has a radius rp, which is the value of the
solution. With the aid of this theorem, the search can be reduced to
a finite number of critical circles.

The number of critical circles to be considered is
(

n
3

)
+

(
n
2

)
+ n,

where
(

n
3

)
is the number of circles determined by three points on

their circumference,
(

n
2

)
is the number of circles defined by two

points determining the diameter and n is the number of null circles;
a null circle is a service point located at a demand point, the for-
mer serving only the latter. The number of possible combinations
to cover n points by p critical circles becomes very large when n is
large. However, geometrical considerations associated with a known
upper bound and with the properties of relevant triangles defined
by demand points, significantly reduce the size of the sub-problem
to be solved.
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