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a b s t r a c t

Aboveground biomass (AGB) of temperate forest plays an important role in global carbon cycles and
needs to be estimated accurately. ALOS/PALSAR (Advanced Land Observing Satellite/Phased Array L-
band Synthetic Aperture Radar) data has recently been used to estimate forest AGB. However, the rela-
tionships between AGB and PALSAR backscatter coefficients of different forest types in Northeastern
China remain unknown. In this study, we analyzed PALSAR data in 2010 and observed AGB data from
104 forest plots in 2011 of needleleaf forest, mixed forest, and broadleaf forest in Heilongjiang province
of Northeastern China. ‘‘Poisson” regression in generalized linear models (GLMs) and BRT (boosted regres-
sion tree) analysis in generalized boosted models (GBMs) were used to test whether the constructed
PALSAR/AGB models based on individual forest types have better performance. We also investigated
whether adding topographical and stand structure factors into the regression models can enhance the
model performance. Results showed that GBM model had a better performance in fitting the relation-
ships between AGB and PALSAR backscatter coefficients than did GLM model for needleleaf forest
(RMSE = 3.81 Mg ha�1, R2 = 0.98), mixed forest (RMSE = 17.72 Mg ha�1, R2 = 0.96), and broadleaf forest
(RMSE = 19.94 Mg ha�1, R2 = 0.96), and performance of nonlinear regression models constructed on indi-
vidual forest types were higher than that on all forest plots. Moreover, fitting results of GLM and GBM
models were both enhanced when topographical and stand structure factors were incorporated into
the predictor variables. Regression models constructed based on individual forest types outperform than
that based on all forest plots, and the model performance will be enhanced when incorporating topo-
graphical and stand structure factors. With information of forest types, topography, and stand features,
PALSAR data can express its full ability in accurate estimation of forest AGB.

� 2016 Published by Elsevier B.V.

1. Introduction

Temperate forests cover more than 6.4 billion hectares on the
Earth, and approximately 41 Pg carbon is stored in its vegetation
carbon pools, most of which is held in aboveground live biomass
(AGB) (Dixon et al., 1994). In Northeastern (NE) China, the area
of temperate forest is more than 38.3 million hectares and
accounts for more than one third of the total forest area in China,

and the carbon storage of forests in this area is about 1.4 Pg C
and also accounts for about 30% of the total carbon storage in for-
ests of China (Wang, 2006). Many factors have both positive and
negative influence on forest aboveground biomass. On the one
hand, human and natural disturbances, such as harvesting, fire,
and pest disease, in history decreased the carbon density in NE
China, which is lower than that in temperate forests of other
regions over the world (Fang et al., 2001). Forests in NE China
tended to be carbon source due to overharvesting and degradation
during 1980s and 1990s (Piao et al., 2009). On the other hand, NE
China locates in high latitude region where the climate has chan-
ged intensely since last century, and forest biomass in this region
is boosted by the climate warming (Yang and Wang, 2005). More-
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over, although forests in NE China have experienced severe har-
vesting in history (Jiang et al., 2002; Yu et al., 2011), they had been
one of the key objectives for conservation and reforestation in Nat-
ural Forest Resource Conservation Project of China since 2000 (Wei
et al., 2014), and forest biomass in this region increased rapidly
(Ma et al., 2016). Forest biomass in NE China has changed greatly
during the past several decades. Therefore, accurate estimation of
forest aboveground biomass has important significance in estimat-
ing the role of temperate forests in regional and global carbon cycle
(Laurin et al., 2016) and developing science-based forest manage-
ment practices.

There are a number of ways to estimate and monitor forest AGB
(Brandeis et al., 2006; Soenen et al., 2010; FAO, 2015). Directly
weighing individual components of trees is the most accurate
way to estimate the biomass of trees (Parresol, 1999), but the
method is hardly adopted because of its high cost of labor, money,
and time. Conducting forest inventory and calculating forest bio-
mass using allometric biomass equations based on DBH (diameter
at breast height) and height of each tree is an efficient way (Gower
et al., 1999; Wang, 2006). Although rich data of forest composition
and structure can be obtained in forest inventory, it still has some
deficiency in evaluating spatial distribution of forest biomass
(Brown et al., 1999; Houghton et al., 2001). Moreover, it is also dif-
ficult to calculate the biomass of some tree species, as their allo-
metric equations haven’t been established yet. Remote sensing
has offered a viable mean for estimating forest AGB at large spatial
scales (Hansen et al., 2000; Myneni et al., 2001; Brown, 2002).

Estimation of forest AGB from remote sensing data starts with
analysis of the relationship between remote sensing signals and
AGB of training samples, and then applies this relationship (statis-
tical model) to calculate AGB over the entire study area (Bastin
et al., 2014). Data from optical sensors were used to estimate forest
biomass, based on the relationship between forest AGB and vege-
tation indices, such as NDVI (normalized difference vegetation
index) and EVI (enhanced vegetation index) (Huete et al., 2002;
Nakaji et al., 2008). However, the applications with optical data
are often limited by the lack of high quality images due to frequent
clouds and saturation at low biomass level by the spectral bands
and spectral indices (Nichol and Sarker, 2011). Data from LiDAR
(Light detection and ranging) provide accurate three-dimension
information like tree height and canopy vertical structure
(Naesset, 2002; Goetz et al., 2009), and AGB is calculated using
empirical equation of tree height and biomass (Lefsky et al.,
1999; Zhao et al., 2009). Because of sophisticated technical equip-
ment and high cost, airborne LiDAR images are not widely avail-
able and are less often used in biomass estimation at large
spatial scales, including temperate forest of NE China (Tang et al.,
2012; Zhang and Ni-meister, 2014).

Synthetic Aperture Radar (SAR) data such as L-band ALOS/PAL-
SAR (Advanced Land Observing Satellite/Phased Array L-band Syn-
thetic Aperture Radar) and X-band TerraSAR-X are widely available
and have been increasingly used in estimation of forest AGB
(Karjalainen et al., 2012; Vastaranta et al., 2014). PALSAR data were
used to estimate AGB of forest plots from tropic and temperate for-
ests to boreal forests in Africa, North America, Australia, and Russia
(Lucas et al., 2007; Thiel et al., 2009; Lucas et al., 2010; Cartus et al.,
2012; Sarker et al., 2012). Nonlinear regression models were devel-
oped to estimate forest AGB based on PALSAR backscatter coeffi-
cients; but the model structure and parameters vary
substantially among these studies (Lucas et al., 2010; Englhart
et al., 2011; Carreiras et al., 2012; Peregon and Yamagata, 2013).
In addition, other forest stand properties (stand structure and com-
plexity of understory layer) and topographical features vary among
different forest types and affect forest AGB (Conard and Ivanova,
1997; Jobidon, 2000; Ma et al., 2015b). These factors also have
influence on PALSAR backscatter coefficients (Lucas et al., 2010;

Whittle et al., 2012; Atwood et al., 2014). Therefore, it may be use-
ful to incorporate forest stand and topographical factors in the
nonlinear regression models and to construct various regression
models of different forest types for the purpose of accurate estima-
tion of AGB.

In this study, we constructed the nonlinear relationship
between PALSAR backscatter coefficients and forest AGB of differ-
ent forest types in NE China, based on forest inventory data of
104 plots and PALSAR data. Forest types in NE China were divided
into broadleaf forest, needleleaf forest, and mixed forest in our
study. The objectives of this study were twofold: (1) determine
the relationships between AGB and PALSAR backscatter coeffi-
cients by different forest types; (2) test the hypothesis that adding
forest stand and topographical factors in the predictor variables of
regression models can improve estimation of forest AGB.

2. Materials and methods

2.1. Study area

Our study area is the forest zone in Heilongjiang province of NE
China, and it extends across 43.42�N–52.58�N, 118.06�E–135.16�E
(Fig. 1). The topography is characterized by low mountains with
elevation of 120–1000 m. The climate types are mid-temperate
continental monsoon climate and cold- temperate continental
monsoon climate. The annual mean temperature ranges from
�2.8 �C in southern part to �3.2 �C in northern part. The average
annual rainfall ranges from 530 mm to 800 mm, falling most in
summer. Three main forest types are located in our study area,
needleleaf forest in the northern part, mixed forest in the central
part, and broadleaf forest in the southern part (Fig. 1). Based on
our inventory data and previous studies (Ma et al., 2016; Ma
et al., 2015b), species compositions of the three forest types are
listed in Table 1.

2.2. Field inventory data and AGB calculation

In 2011, field inventory was carried out in various types of for-
ests in Heilongjiang province. A total of 104 forest plots (Fig. 1)
with the size of 20 m � 50 m were surveyed. These plots belong
to three forest types: needleleaf forest, mixed forest, and broadleaf
forest (Table S2). For each plot, location (latitude and longitude) of
the central point, species name, diameter at breast height (DBH),
and height of individual trees in the overstory layer were recorded.
Because the lower limit of the applicable range of most biomass
allometric equations in this study is about 5 cm, we only measured
the trees that with a minimum DBH of 5 cm. trees with DBH less
than 5 cm will be regarded as shrubs, and their biomass was calcu-
lated by direct measurement. Each plot was regarded as an individ-
ual sample in our analysis. The number of dead trees was quite
few, therefore they were not included in the AGB of our survey.
Within each tree plot, three 2 m � 2 m shrub plots and three
1 m � 1 m herb plots were selected randomly. Species name and
abundance of each shrub and herb were recorded, and then the
aboveground part of shrub and herb was harvested. These shrub
and herb samples were taken into laboratory for further process-
ing, and they were dried to a constant weight at 105 �C and then
weighed. Considering the low growth rate of forests in this high
latitude region, the increment of forest AGB for one year is negligi-
ble. Therefore, forest inventory results in 2011 were matching with
PALSAR data in 2010.

The DBH-based allometric equations from previous studies
(Chen and Zhu, 1989; Wang, 2006) were adopted to calculate tree
AGB (Table S1). The dry weight of shrub and herb samples of the
three subplots within a tree plot represented the AGB of under-
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