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ARTICLE INFO ABSTRACT

Article history:

Crown width is a tree variable that is commonly used as an important predictor in forest growth and yield
models that serve as decision-support tools in forestry. Here, we developed a generalized interregional
nonlinear mixed-effects individual tree crown width model using data from 3369 Prince Rupprecht larch
(Larix principis-rupprechtii Mayr.) trees on 116 sample plots that were distributed across the two most
important regions in northern China. Because measurements from the same sample plot were highly cor-
related with each other, random effects at the levels of both sample plots and stands with different site
conditions (blocks) were used to develop a two-level nonlinear mixed-effects crown width model. To
describe the interregional variability of crown width between the regions, a dummy variable, which
accounts for region-specific differences, was introduced into the model. The results showed that the
two-level interregional nonlinear mixed-effects crown width model accurately described the regional
variability of crown width for Prince Rupprecht larch in northern China. Modeling the random effects
at the block level alone led to significantly high correlations among the residuals. However, these corre-
lations decreased significantly when the random effects were modeled at both the block and sample plot
levels. Measuring the crown width of four randomly selected Prince Rupprecht larch trees per sample
plot is recommended for localizing the mixed-effects crown width model and precisely predicting the
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crown widths of the remaining trees on each plot.
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1. Introduction

A tree crown is a mass of foliage that is distributed on branches
that grow outward from the tree trunk. Crown dimensions are sig-
nificantly correlated with the foliage surface and crown volume,
which in turn are related to the scale of the photosynthetic appa-
ratus. Measurements and analyses of crown dimensions are impor-
tant for quantifying and qualifying tree vigor, growth stage,
stability, and the production efficiency of forest stands. Many stud-
ies have modeled crown length (Marshall et al., 2003; Tahvanainen
and Forss, 2008; Fu et al., 2017a), the crown ratio (Tahvanainen
and Forss, 2008; Leites et al., 2009; Fu et al., 2015), and crown
width (CW) (Bragg, 2001; Zarnoch et al., 2004; Sanchez-Gonzélez
et al., 2007; Fu et al., 2013, 2017b; Sharma et al., 2016). Crown
width is used as an important predictor to develop individual
tree-based mortality models (Monserud and Sterba, 1996),
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above-ground biomass models (Carvalho and Parresol, 2003; Fu
et al., 2016a), and tree volume and taper equations (Jiang and
Liu, 2011; Gonzalez-Benecke et al., 2014). Crown width can be also
used in ecological modeling to predict light interception in the
canopy (Oker-Blom et al., 1989; Pukkala et al., 1991). Despite the
numerous uses of CW, measuring the CW of each tree on a sampled
area is time-consuming and costly. Thus, it is critical to use many
sample trees to develop models that accurately predict CW.
Crown width models can be developed either using CW as a
function of diameter alone (Foli et al., 2003; Sonmez, 2009;
Pretzsch et al., 2015) or a combination of diameter and other tree
and stand variables (Bragg, 2001; Fu et al., 2013; Sharma et al,,
2016). The former models may be biased when applied to a large
geographic scale because CW-diameter allometry is significantly
influenced by site quality, stand density, and any other random
variabilities caused by stochastic factors. Thus, the prediction bias
of a CW model can be reduced by integrating these variables (Fu
et al,, 2013; Sharma et al., 2016). Methods of developing CW mod-
els have evolved from simple ordinary least squares (OLS) regres-
sion to linear mixed-effects modeling, and then to nonlinear


http://crossmark.crossref.org/dialog/?doi=10.1016/j.foreco.2016.12.034&domain=pdf
http://dx.doi.org/10.1016/j.foreco.2016.12.034
mailto:stang@ifrit.ac.cn
http://dx.doi.org/10.1016/j.foreco.2016.12.034
http://www.sciencedirect.com/science/journal/03781127
http://www.elsevier.com/locate/foreco

L. Fu et al./Forest Ecology and Management 389 (2017) 364-373 365

mixed-effects (NLME) modeling (Sanchez-Gonzalez et al., 2007; Fu
et al,, 2013; Hao et al,, 2015; Sharma et al., 2016). Among these
methods, the mixed-effects modeling approach is the most popu-
lar, and it has been increasingly applied to develop CW models.
Previous studies have proven that the mixed-effects modeling
approach analyzes hierarchically structured data more efficiently
than any other approach, and it increases the prediction accuracy
of the models (Fu et al., 2013; Hao et al., 2015; Sharma et al., 2016).

Prince Rupprecht larch (Larix principis-rupprechtii Mayr.) forests
occupy approximately 65% of the forested lands in northern China,
and it dominates the forest ecosystems of this area (SFA, 2012).
These larch forests are mostly managed for timber production,
ecosystem or watershed protection, and as habitats for certain wild
animals. “Bright coniferous forests” is a special term that is usually
used for larch forests, which have a high albedo, to distinguish
them from evergreen forests that are composed of Picea and Abies
species (Shi, 1999; Shi et al., 2000). Larch forests in this region are
usually characterized by a large amount of biomass and high pri-
mary productivity. These characteristics may be related to the high
adaptability of the tree species to extremely low winter tempera-
tures, as well as to the efficient use of water from the melting zone
of the permafrost soil during the hot and dry summer seasons
(Zhou, 1991; Xu, 1998; Abaimov et al., 2000). This is why Prince
Rupprecht larch is widely used for afforestation and timber pro-
duction in the temperate regions of China (Leng et al., 2008). Many
studies have demonstrated that larch forests play critical roles in
regional carbon storage and carbon cycling (Fang et al., 1998;
Zhou et al., 2002; Wang, 2006; Fu et al., in press). Even though
many studies have been conducted on this species across the
region, they all have focused mainly on biomass and other tree
characteristics (Zeng, 2015; Fu et al., in press), and few CW models
have been developed thus far for Prince Rupprecht larch in China
(Fu et al., 2016Db). Specifically, the application of multilevel NLME
to CW modeling for this tree species has been largely overlooked.

Although Prince Rupprecht larch has a special adaptability that
enables it to grow in different site conditions, the allometric rela-
tionship between its CW and other tree characteristics (e.g., diam-
eter and height) varies from one stand to another, and even within
the same stand, they may not be constant over time (Fu et al,,
2016b). Furthermore, regional CW variability is substantial, and
it needs to be considered while making CW predictions at large
spatial scales. Thus, we developed a generalized interregional non-
linear mixed effects CW model by applying a two-level mixed
effects modeling approach. For this purpose, we used data from
3369 Prince Rupprecht larch trees on 116 sample plots that are
located in the two most important Prince Rupprecht larch distribu-
tion regions (western and northern Shanxi) in northern China. The
CW modeling used individual tree and stand variables, block-
(defined as a stand with a specific site condition) and sample
plot-level random effects, and one indicator variable that
accounted for the effects of regional differences. We also evaluated
the effects of having a sub-sample of complementary trees, for
which both dependent and independent variables were measured,
on the prediction accuracy of the model, because this enables ran-
dom parameters to be estimated. The proposed generalized inter-
regional nonlinear mixed effects CW model will be applicable for
precise CW predictions of Prince Rupprecht larch trees in northern
China.

2. Materials and methods

2.1. Study area and data

We used data from 116 permanent sample plot (PSPs) that were
established in natural stands of Prince Rupprecht larch on the

state-owned Guandi Mountain forest (67 PSPs) (western Shanxi)
and the state-owned Bogiang forest (49 PSPs) (northern Shanxi)
in northern China (Fig. 1). Western and northern Shanxi are the
most important regions where this species occurs in China. Each
PSP is square, with an area of 0.04 ha. These PSPs were established
in 2015 and nested within a total of eight different blocks. The 67
PSPs in western Shanxi and the 49 PSPs in northern Shanxi were
each allocated in four blocks. The PSPs were selected so that they
provided representative information for a variety of stand struc-
tures and densities, tree heights and ages, and site productivity.
Data collection was conducted by the Research Institute of Forest
Resources Information Techniques, Chinese Academy of Forestry.

All standing living trees with diameter at breast height (D)
> 5 cm were measured for total tree height (H), height to live
crown base (height above ground to crown base, HCB), and four
crown radii. The positions of the four crown radii of each tree were
determined by two azimuths (Bragg, 2001), where the first azi-
muth was defined from south to north, and the second azimuth
was perpendicular to the first (Bragg, 2001; Marshall et al.,
2003). In each quadrant, the crown radii were measured as the hor-
izontal distances from the center of the tree bole to the greatest
extent of the crown from the bole. Branch trips were located by
vertical sighting with a clinometer.

Crown width was calculated as the half-sum of the four crown
radii. Four dominant or codominant trees (the proportion of the
100 thickest trees ha~!) per PSP were identified and measured
(Raulier et al., 2003). The ages of the selected trees were recorded
by counting the growth rings on increment cores that were taken
from the stem at 0.1 m above the ground (Rozas, 2003). For each
PSP, dominant D (DD), dominant H (DH), and dominant age were
obtained from the averages of these attributes (Du et al., 2000).
The relationships of CW with the three tree variables (D, H, and
HCB) and two stand variables (DH and DD) are shown in Fig. 2.

Because model validation is one of the most important proce-
dures that ensures the credibility and confidence of developed
models, we validated our CW model by randomly dividing the PSPs
into two groups: one for model fitting and the other for model val-
idation. The model fitting dataset consisted of 2250 trees from 69
PSPs, while the model validation dataset consisted of 1119 trees
from 37 PSPs. Summary statistics of the measurements of the indi-
vidual tree characteristics and relevant stand characteristics are
presented in Table 1.

2.2. Base model

Taking a nonlinear relationship between CW and D into account
(Fig. 2), our modeling began with fitting the basic mathematical
functions (hereafter termed the base model) to the data, and this
was followed by expanding the best performing base model by
integrating various covariate predictors. Fu et al. (2013) developed
a logistic CW model (1) using D, H, HCB, and DH as covariate pre-
dictors for Chinese fir (Cunninghamia lanceolata). They also
reported that the CW model developed using this logistic function
[model (1)] was less biased than models that incorporated power,
asymptotic, or exponential functions. We also found that this
model form [model (1)] exhibited the best performance, and,
therefore, we used model (1) as a base model to develop an inter-
regional nonlinear mixed-effects CW model.
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where CWu, HCBjj, Hii, and Dy are the CW (m), HCB (m), H (m),
and D (cm), respectively, of the k™ tree in the j sample plot in
the i block; DHj; is the DH (m) of the j™ sample plot of the i block;
& is the error term; and ¢, — ¢ are parameters to be estimated.
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