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a b s t r a c t

We explore the use of interior point methods in finding feasible solutions to mixed integer programming.

As integer solutions are typically in the interior, we use the analytic center cutting plane method to search

for integer feasible points within the interior of the feasible set. The algorithm searches along two line

segments that connect the weighted analytic center and two extreme points of the linear programming

relaxation. Candidate points are rounded and tested for feasibility. Cuts aimed to improve the objective

function and restore feasibility are then added to displace the weighted analytic center until a feasible

integer solution is found. The algorithm is composed of three phases. In the first, points along the two line

segments are rounded gradually to find integer feasible solutions. Then in an attempt to improve the

quality of the solutions, the cut related to the bound constraint is updated and a new weighted analytic

center is found. Upon failing to find a feasible integer solution, a second phase is started where cuts related

to the violated feasibility constraints are added. As a last resort, the algorithm solves a minimum distance

problem in a third phase. The heuristic is tested on a set of problems from MIPLIB and CORAL. The

algorithm finds good quality feasible solutions in the first two phases and never requires the third phase.

& 2010 Elsevier Ltd. All rights reserved.

1. Introduction

Besides its practical importance, finding feasible solutions for
mixed integer programming (MIP) is an important step towards
finding optimal solutions. Good feasible solutions help fathom
branches earlier in the branch and bound tree and contribute to the
reduction of the computational time and memory required.

Compared to extreme points, the motivation behind the use of
interior points resides in the fact that its rounding is more likely to
result in a feasible integer solution. Choosing a central point such as the
center of gravity would be ideal. Its calculation, however, is hard. The
analytic center is easier to calculate and its location can be displaced
by duplicating certain constraints, i.e. modifying their weights. In this
paper, weights are used to guide the analytic center towards regions
where rounding will likely give a feasible integer solution.

Some of the early attempts to use interior point methods for
integer programming are due to Mitchell and Todd [1] and Mitchell
[2] who use a primal-dual predictor-corrector interior point
method in a cutting plane method to solve integer programs. Being
aware that warm starting is key to a successful method, Mitchell [2]
uses an idea from Gondzio [3] where the interior point method is
terminated early at a central interior point that is later used to
warm start the solution methodology after cuts are added. After-
wards, the concept of analytic centers was mainly and successfully

used in cutting plane methods [4–6]. Its use in integer program-
ming was to solve master problems in Lagrangian relaxation/
column generation settings [7]. This paper describes a novel
application of analytic centers to integer feasibility problems
and introduces the notion of integer analytic centers.

The paper makes a valuable contribution towards the use of interior
point methods in mixed integer programming. We show that through
the use of the analytic center cutting plane method (ACCPM), interior
point methods can compete with linear programming based methods
in finding quality feasible solutions for MIP. Due to the nature of interior
point methods and our implementation, the computational times,
although within a maximum of 3 min, are not as competitive. The
paper also introduces the notion of an integer analytic center and the
way to compute it, which renders the application of the analytic center
cutting plane method possible to problems where the master problem
is an integer problem such as in Benders decomposition [8].

The literature is rich with heuristics for MIP. Hillier [9] was
among the first to propose a heuristic based on interior points. His
three-phase method starts by identifying an interior path con-
necting an interior point and the optimal solution of the LP
relaxation. In Phase-II, a search around the interior path is
conducted to find a feasible integer solution, but with no guaran-
tees for a successful termination. In Phase-III, the algorithm
attempts to find other feasible integer solutions that improve
the objective function value. Hillier’s algorithm was implemented
within a branch and bounds algorithm in Jeroslow and Smith [10].
Balas and Martin [11] use the fact that every 0–1 binary problem is
equivalent to a linear problem with all slack variables being basic.
Their proposed heuristic solves the linear programming relaxation
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and pivots all the slack variables to the basis. The extension of [11]
to general mixed integer problems is presented in Balas et al. [12].
Saltzman and Hillier [13] describe an algorithm that enumerates
feasible 1-ceiling points, integer solutions lying on or near the
boundary of the feasible region, around the optimal linear pro-
gramming solution. Glover and Laguna [14,15] propose a heuristic
framework based on cut search procedures for general mixed
integer problems. Løkketangen and Glover [16] present a tabu
search heuristic while Balas et al. [17] propose an algorithm that
enumerates extended facets of the octahedron to solve 0–1 binary
problems. The feasibility pump for 0–1 binary problems was
introduced in Fischetti et al. [18] and was extended to general
mixed integer problems in Bertacco et al. [19]. In Achterberg and
Berthold [20], a modification of the feasibility pump that improves
the quality of the feasible solutions is presented.

The proposed approach, that we refer to as analytic center
feasibility method (ACFM), is composed of three phases. In the first,
a search is conducted around two line segments connecting the
analytic center and two extreme points of the LP relaxation. The
candidate points are first rounded and checked for feasibility. The
cut that is related to the objective function is updated as feasible
solutions are identified, and a new analytic center is found before
restarting the search. Upon failing to find a feasible integer solution,
a second phase is started where the weights of the violated
constraints are incremented and a cut formed from the convex
combination of the violated constraints is added. If no feasible
solution is found, a third phase is invoked in which a minimum
distance problem is solved guaranteeing a successful termination
of ACFM.

ACFM is tested on a set of problems from MIPLIB and CORAL. The
algorithm found good quality feasible solutions in less than 20
iterations of the first two phases, without the need for the third
phase. In 32 of the 36 tested problems, ACFM found a better quality
solution than the feasibility pump, at the expense of taking more
computational time. Furthermore, ACFM found a feasible solution
for four instances in which the feasibility pump has failed.

The rest of the paper is organized as follows. Section 2 presents
the main results of the paper related to the analytic center
feasibility method. Computational results are presented in
Section 3. Section 4 summarizes the paper and highlights future
research.

2. The analytic center feasibility method

This section is devoted to the description of the analytic center
feasibility method for mixed integer programming. We first focus on
the analytic center, introduce the notion of integer analytic center, and
then use it in an iterative algorithm to find feasible solutions for MIP.

2.1. The weighted analytic center

The analytic center was first introduced in [21] and used in [4] in
a cutting plane algorithm. To provide a detailed description, let us
introduce the generic mixed integer problem:

min bT y

s:t: AT yrc;

yj integer 8jA J

ð1Þ

that is of interest in this work. We assume that AT yrc has the
implicit or explicit bound constraints lryru. The analytic center
associated with the LP relaxation

min bT y

s:t: AT yrc

is defined as the point that maximizes the product of the distances
from the boundary of the localization set:

F ¼
y : bT yrzu

AT yrc

( )
,

where zu is an upper bound on bTy that ensures that the objective
function value of the analytic center is within a desired bound. The
weighted analytic center adds a weight on a particular constraint to
push the analytic center away from it. Goffin and Vial [22] show
that repeating a constraint is equivalent to setting a weight on its
corresponding slack in the potential function. Usually, a weight
equal to the number of constraints is associated with the bound
constraint bT yrzu to force the analytic center away from the upper
bound. Given a weight vi corresponding to each constraint i, the
weighted analytic center yac is the unique point that maximizes the
weighted potential function:

max jD ¼
Xm

i¼0

vi ln si

s:t: AT yþ s ¼ c;

bT yþ s0 ¼ zu;

s0; s40:

ð2Þ

Taking the dual of problem (2) we get:

max jP ¼ �cT x�zux0 þ
Xm
i¼0

vi ln xi

s:t: Axþ bx0 ¼ 0;

x0; x40:

ð3Þ

The necessary and sufficient first order optimality conditions of (2)
and (3) are

Sx¼ v,

s0x0 ¼ v0,

Axþbx0 ¼ 0, x,x040,

AT yþs¼ c, s40,

bT yþs0 ¼ zu, s040:

Defining ~S as the diagonal matrix of ~s ¼ s0
s

� �
, ~N as the diagonal

matrix of ~v ¼ v0
v

� �
, ~x ¼ x0

x

� �
, ~c ¼ zu

c

� �
, and ~A ¼ ½b,A�, the first order

optimality conditions are rewritten as

~S ~x ¼ ~v,

A ~x ¼ 0; ~x40;
~AT yþ ~s ¼ ~c ; ~s40:

ð4Þ

In this paper, we use the Newton method to solve problem (3).
Starting from a strictly feasible point x, the algorithm calculates the
Newton direction dx:

dx ¼N�ð1=2ÞXðv1=2�N�ð1=2ÞXsÞ,

s¼ c�AT y,

y¼ ðAN�1X2AT Þ
�1AN�1X2c,

and updates x as:

xþ ¼ xþadx:

A measure of proximity to the analytic center is defined as ZPðxÞ ¼

Jv1=2�N�ð1=2ÞXsJ. When far from the analytic center ZPðxÞ41, the
step size a is found by performing a line search along dx to maximize
jP subject to xþ40. When near the analytic center ZPðxÞo1, a full
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