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Abstract

This paper addresses the problem of scheduling a set of n unit execution time (UET) jobs on an m-permutation flowshop with
arbitrary time delays, so as to minimize the makespan criterion. A polynomial time algorithm is exhibited for the three-machine and
four-machine cases, respectively.
� 2006 Elsevier Ltd. All rights reserved.
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1. Introduction

The flowshop scheduling problem with time delays can be described as follows. Given are a set J = {1, . . . , n} of
jobs and a set of m machines. Any job i ∈ J comprises m operations, oi1, . . . , oim, each of which has a unit execution
time (UET). Each job is first processed on machine 1, then on machine 2, and so on until it completes its last operation
on machine m. Moreover, for any j ∈ {1, . . . , m − 1}, there is a time delay between operations oij and oij+1, denoted

by d
j
i . If t (oij ) denotes the starting time of oij , then a valid schedule is such that

∀i ∈ {1, . . . , n}, ∀j ∈ {1, . . . , m − 1}, t (oij ) + 1 + d
j
i � t (oij+1).

For each job i ∈ {1, . . . , n}, there is an associated delay vector Di = (d1
i , . . . , dm−1

i ).
In this paper, we focus on a subclass of flowshop scheduling, namely the permutation schedules. In this subclass,

the order in which each machine processes the jobs is identical for all machines. In other words, job overpassing is not
permitted. A permutation schedule is thus given by a bijection � : J → {1, . . . , n} such that, for any job i ∈ J , �(i)

denotes the position of job i in �. We seek a permutation schedule, �, which minimizes the overall completion time,
called the makespan.

Motivation for the formulated problem is twofold: theoretical and practical. The first goal is to explore the borderline
between easy and hard cases of the problem under study. Regarding the second goal, in the traditional flowshop
scheduling, it is a common practice to assume that once a job has finished its execution on any machine, it becomes
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immediately available for further processing. However, in many practical applications, this assumption is not justified.
Indeed, there is often a significant time delay between the completion of an operation and the beginning of the next
operation of the same job. Time delays may be attributed, for example, to transportation times of the jobs on the machines
or, in some other applications, to the different times needed by the drying processes of the jobs before they can be
handled by another processing stage. In some applications, the processing times might even be negligible compared
to the time delays: assuming in this case that the processing times of the jobs are unitary, and therefore have a small
influence on the makespan of the schedule.

The restriction to permutation flowshops is also a common assumption as it simplifies the structure of the solutions
and the proofs (see e.g. [1]). From a practical point of view, the schedule obtained has a simple structure and thus
may be easily implemented. Moreover, the raw materials between the machines remain bounded and the intermediate
storage capacities may be limited (even though it is not the primary objective). This leads to good practical solutions.

Let us first recall that, when the time delays are ignored, the permutation flowshop schedules are dominant for
m�3. Johnson [2] showed that the two-machine problem is solvable in O(n log n). The problem becomes NP-hard
in the strong sense for any fixed m�3 [3]. When the time delays are considered, to the best of our knowledge, the
complexity status of the UET problem we are considering in this paper is unknown, but several authors worked on
closely related problems. Mitten [4] showed that the two-machine permutation flowshop, with time delays, is still
solvable in O(n log n). It is interesting to note that, for the UET case, this problem can be easily solved in O(n) since
any permutation is optimal. If both minimal and maximal time delays are taken into account simultaneously, then
Frondevelle et al. [5] proved that the two-machine permutation flowshop problem becomes strongly NP-hard. Yu
et al. [6] showed that minimizing the makespan in a UET two-machine flowshop problem with time delays is strongly
NP-hard. Let us observe that permutation flowshops with time delays are clearly not dominant, even for the m = 2
case and UET jobs. Indeed, Rebaine [7] showed that the best UET permutation schedule is worse than that of the best
UET flowshop schedule by a factor of m. However, special cases exist where permutation schedules are still dominant
(see e.g. [8]).

This paper is devoted to the permutation flowshop problem with UET jobs and arbitrary time delays. It is organized as
follows. Section 2 presents some definitions and preliminary results. In Section 3, an O(n log n) algorithm is presented
to solve the three-machine case. Section 4 discusses the four-machine case, and presents an O(n2) algorithm. Section 5
is our conclusion.

2. Preliminaries

We begin by introducing definitions and results necessary for the following sections. Before proceeding further, let
us first present the following simple property of a permutation schedule.

Lemma 1. Any given permutation schedule can be converted into another permutation schedule of the same length
such that jobs of equal delay vectors are scheduled one after the other.

Proof. The lemma can be easily proved by a repeated exchange argument. �

From the above lemma, we can therefore assume without loss of generality, in the remainder of this paper, that the
delay vectors are all different: for any (i, j) ∈ J × J with i �= j , we have Di �= Dj .

For the sake of clarity, we recall that, in what follows, a node of a graph refers to a job.

Definition 1. Given a precedence graph, if there exists a path from node x to node y, then x is a predecessor or an
ancestor of y, and y is a successor or a descendant of x.

Definition 2. Given a precedence graph, a node is initial if it does not have any predecessor.

For a given machine j ∈ {2, . . . , m} and a permutation schedule �, we denote by sj (�) the total number of idle slots
on machine j before the last operation onj , Its value is given by the following result. Observe that the makespan of the
permutation schedule � is Cmax(�) = sm(�) + n.
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