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1. Introduction

Over the last years, much attention has been paid to the
development of software for the calculation of likelihood ratios for
comparisons of a mixture and a known person, to evaluate the
weight of evidence in favour of that person’s contribution to the
mixture. There are several such programs now available, broadly
speaking divided into two classes: the models that evaluate as
evidence the recorded alleles of the mixture (called binary or semi-
continuous models, depending on their ability to handle dropout)
and those that also take the peak heights into account, called the
continuous models. An overview of available software and their
features is provided in [1]. What these programs have in common
with each other is that they enable the computation of likelihood
ratios (LR’s) of the form LR(M, g) = P(M j H1)/P(M j H2) where H1 and
H2 are hypotheses stating the contributors of the mixture M; the
difference between H1 and H2 is usually only that H1 states the
contribution of an individual with genotype g and H2 has replaced
that person by an unknown individual. In this article we are going
to compute LR’s denoted LR(M1, M2) which compare two mixed
traces M1, M2 with each other, to evaluate whether or not they have

a donor in common. This is a generalization of the LR’s of the form
LR(M, g), since if the mixture M2 is in fact a single source trace from
a person whose genotype g can be deduced with certainty, then
LR(M1, M2) = LR(M1, g). Likelihood ratios of the form LR(M1, M2) can
obviously be useful in order to establish a connection between
the two cases in which the mixtures M1 and M2 have been found.
The structure of this paper is as follows. First, we explain how the
computation of LR’s of the form LR(M1, M2) can be done efficiently
by recalling that the computation of LR’s LR(M, g) in fact is
equivalent to a probabilistic deconvolution of the mixture M,
giving us a probability distribution on the genotypes of the donors
of the mixture. It then suffices to do this for both M1 and M2 and
match the derived donors with each other, taking the probability
distributions into account. Having established the necessary
theory, we then apply this method to various simulated mixtures,
in order to determine whether or not the obtained LR’s are in
practice sufficiently well discriminating between the situations
with and without a common donor. Finally, we report on the
application of this method to the mixtures in the Dutch DNA
database. The comparison of mixtures with possible dropout to a
database of individuals in order to find the donors of the mixture
has been described in various places, e.g. [2–4]. The method
presented here is a generalization towards the comparison of any
pair of DNA profiles, i.e., mixed traces or reference profiles,
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A B S T R A C T

Several methods exist to compute the likelihood ratio LR(M, g) evaluating the possible contribution of a

person of interest with genotype g to a mixed trace M. In this paper we generalize this LR to a likelihood

ratio LR(M1, M2) involving two possibly mixed traces M1 and M2, where the question is whether there is a

donor in common to both traces. In case one of the traces is in fact a single genotype, then this likelihood

ratio reduces to the usual LR(M, g). We explain how our method conceptually is a logical consequence of

the fact that LR calculations of the form LR(M, g) can be equivalently regarded as a probabilistic

deconvolution of the mixture.

Based on simulated data, and using a semi-continuous mixture evaluation model, we derive ROC

curves of our method applied to various types of mixtures. From these data we conclude that searches for

a common donor are often feasible in the sense that a very small false positive rate can be combined with

a high probability to detect a common donor if there is one. We also show how database searches

comparing all traces to each other can be carried out efficiently, as illustrated by the application of the

method to the mixed traces in the Dutch DNA database.
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including the possibility to take an arbitrary number of replicate
analyses into account.

We have worked throughout with the semi-continuous model
described in [5], where all donors of the mixture are assigned their
own probability of dropout. This allows to also investigate whether
a major donor to one mixture, is possibly the same person as a
minor donor of another mixture. We note however, that although
we used a particular choice of mixture evaluation model here, the
approach described in this article can in principle be applied to
other mixture evaluation models, in particular also for the
continuous models. However, the computations can become
overly demanding if the likelihood ratio does not factorize over
the considered loci, as is the case when it is obtained by integration
over parameters affecting the mixture likelihoods. Finally, a reason
to work with the semi-continuous model is that we apply the
method to mixtures stored in a database. In this database there is
no peak height information.

2. Methods

2.1. Semi-continuous model

We start by recalling the characteristics of the semi-continuous
model that we use in this article. This description is a summary of
the one given in [6] and we refer the reader to that paper for further
details. Suppose that a mixture has n contributors. Let their
dropout rates be d1, . . ., dn with 0 � di � 1, and let c � 0. We define
the probability that allele a is detected in mixture M as

P~d;cða 2 Mj~gÞ ¼ 1�e�cpa

Yn

i¼1

d
ni;a

i ; (2.1)

where ni,a 2 {0, 1, 2} is the number of alleles a present in gi, the
genotype of contributor i (by definition, 00 = 1). Note that, when
c = 0, we see from this formula that an allele is recorded unless it
drops out for all the contributors that have that allele. In [5,6] we
have used the approximation e�cpa � 1 � cpa for c � 1. The formula
used here corresponds to a Poisson distribution with parameter c

for the number of alleles that drop in. The parameter c is therefore
equal to the expected number of alleles dropping in per locus.
Given the number of alleles that drop in, the alleles that drop in are
then obtained as a multinomial sample using the allele frequen-
cies. In particular they are allowed to be identical to each other or
to an already present allele coming from a contributor. To compute
the probability that the observed mixture M is equal to the set of
alleles M, one simply uses (2.1) to obtain

P~d;cðM ¼ Mj~gÞ ¼
Y

x 2 M

P~d;cðx 2 Mj~gÞ
Y

x =2 M

P~d;cðx =2 Mj~gÞ: (2.2)

The probability to observe M ¼ M when some of the donors
have unknown genotypes is obtained by summing (2.2) over the
set of possible genotypes for these donors, weighted by their prior
probability to be the donor’s genotypes. Suppose that the
population frequency of genotype g is denoted p(g), by which
we mean the probability that a person chosen at random from the
population has genotype g. In standard mixture calculations,
without relatedness in the hypotheses, and without applying the u-
correction (cf. [7]), one sets

P~d;cðDi ¼ gÞ ¼ pðgÞ (2.3)

as the a priori distribution of the genotype of Di of donor i. Note that
this is of course independent of ~d and c: regardless of the mixture
or of how we evaluate it, we assume prior to having any mixture
data that each donor is a random person from the population.

In this article we will not apply a u-correction. In principle, the
methodology described below can be generalized to incorporate

this correction, but from a computational point of view this is
unattractive, as we will point out below. Another justification lies
in the fact that comparing mixtures to test whether they have a
donor in common amounts to the retrieval of information for
investigative purposes, and not to the calculation of the weight of
evidence against a specific suspect.

2.2. Deconvolution

Suppose that we have a mixture M, with donors D1, . . ., Dn. We
view the Di as random variables on the set of possible genotypes.
Suppose that there is a person of interest (PoI) S with genotype
g. Let D1, . . ., Dk (with k � 0) be the undisputed contributors to the
mixture, all of whose genotypes Di = gi are known. A standard
approach is to define hypotheses H1 and H2, where H1 states that
D1 = g1, . . ., Dk = gk, Dk+1 = g, the other n � k � 1 contributors being
unknown, and H2 states that D1 = g1, . . ., Dk = gk, and the other n � k

contributors are unknown. The dropout probabilities ~d and the
parameter c are the same for both hypotheses. We now have
sufficient information to compute the likelihood of the mixture
data under these hypotheses and the quotient of these is equal to
(summarizing by I the information {D1 = g1, . . ., Dk = gk} on the
undisputed contributors)

LR~d;cðM; gÞ ¼
P~d;cðMjDkþ1 ¼ S; S ¼ g; IÞ
P~d;cðMjDkþ1 6¼ S; S ¼ g; IÞ ¼

P~d;cðMjDkþ1 ¼ g; IÞ
P~d;cðMjIÞ

: (2.4)

The second equality follows since we assume that the
genotypes of unrelated individuals are independent, and hence
is violated when u > 0. As we have shown in [8], calculation of
these likelihood ratios is exactly the same process as probabilistic
inference of the donor’s genotypes since

LR~d;cðM; gÞ ¼
P~d;cðMjDkþ1 ¼ g; IÞ

P~d;cðMjIÞ
¼

P~d;cðDkþ1 ¼ gjM; IÞ
P~d;cðDkþ1 ¼ gjIÞ

¼
P~d;cðDkþ1 ¼ gjM; IÞ

pðgÞ : (2.5)

Thus LR~d;cðM; gÞ has two interpretations: first, it tells us how many
more times the mixture data are likely to be found if assume that
donor k + 1 has genotype g, compared to the a priori probability
having no information on that donor; and second, it tells us how
many more times it becomes likely that donor k + 1 has genotype g,
given the mixture data, compared to the a priori probability
without mixture data.

In particular, we see from (2.5) that the genotype probabilities
of the searched donor are obtained from the LR and the population
frequencies:

P~d;cðDkþ1 ¼ gjM; IÞ ¼ pðgÞLR~d;cðM; gÞ: (2.6)

A corollary is that we must have, as is dictated by common sense as
well, that LR~d;cðM; gÞ�1=pðgÞ. Note also that, when we consider the

hypotheses H1 and H2 regarding contribution of the suspect, the LR
acts as factor between prior and posterior odds on these
hypotheses, whereas in (2.6) it acts as factor between prior and
posterior probabilities.

2.2.1. Computational considerations

As explained in [6], LR~d;cðM; gÞ, when considered a function of
the allele frequencies, only depends on the frequencies of the
observed alleles in the mixture M for this semi-continuous model.
In other words, for every allele in genotype g that is unobserved in
the mixture, the LR would have been the same if that allele would
have been another unobserved allele. We therefore define
U = {a j a =2 M} as the set of alleles that were not observed in the
mixture. In a computer implementation of the model the set U can
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