
An efficient heuristic for adaptive production scheduling and control
in one-of-a-kind production

Wei Li a, Barrie R. Nault b, Deyi Xue a, Yiliu Tu a,�

a Department of Mechanical and Manufacturing Engineering, University of Calgary, Calgary, Alberta, Canada T2N 1N4
b Management Information Systems Area, Haskayne School of Business, University of Calgary, Calgary, Alberta, Canada T2N 1N4

a r t i c l e i n f o

Available online 8 May 2010

Keywords:

Flow shop scheduling

Adaptive production control

Petri nets

Simulation

a b s t r a c t

Even though research in flow shop production scheduling has been carried out for many decades, there

is still a gap between research and application—especially in manufacturing paradigms such as one-of-

a-kind production (OKP) that intensely challenges real time adaptive production scheduling and

control. Indeed, many of the most popular heuristics continue to use Johnson’s algorithm (1954) as their

core. This paper presents a state space (SS) heuristic, integrated with a closed-loop feedback control

structure, to achieve adaptive production scheduling and control in OKP. Our SS heuristic, because of its

simplicity and computational efficiency, has the potential to become a core heuristic. Through a series

of case studies, including an industrial implementation in OKP, our SS-based production scheduling and

control system demonstrates significant potential to improve production efficiency.

& 2010 Elsevier Ltd. All rights reserved.

1. Introduction

As a typical manufacturing paradigm, one-of-a-kind produc-
tion (OKP) challenges production scheduling and control differ-
ently than mass production. High throughput in OKP is an
extreme example of mass customization, which is one of the
important strategies in the current economy [1] where the
objective is to maximize the customer satisfaction by producing
highly customized products with near mass production efficiency.
OKP is intensely customer focused such that every product is
based on specific customer requirements, and products differ on
matters of colors, shapes, dimensions, functionalities, materials,
processing times, and so on. Consequently, a product that is
produced on an OKP flow line is rarely repeated [2], although
some processes in the production of similar kinds of products can
be repeated. Moreover, unexpected disturbances frequently and
randomly happen to affect the daily production on OKP shop
floors, such as job insertion/cancellation, machine breakdown/
operator absence, and variations in processing times. Thus, OKP
companies use mixed-product production on a flow line to
improve production efficiency [3,4], and they have to adaptively
schedule and control production online.

If a customer order in OKP is viewed as a project, to schedule
the production of products in the customer order in OKP is very
similar to scheduling a project. In fact, to schedule production in
OKP is concurrent engineering, including product design, process

planning, resource allocation, and finally the production schedule.
Through this concurrent engineering effort, a combined engineer-
ing file for a product, including bill of materials (BOMs), bill of
operations (BOOs), and resource constraints, is generated. This file
is referred to as a product production structure (PPS) [5]. After the
generation of a PPS for an OKP product, the processing times of
each operation in the PPS are quoted based on the previous
production of similar products. After all the PPSs for a batch of
OKP products are determined and the processing times of all the
operations are quoted, heuristics are needed to finally sequence
the products in the batch to minimize the makespan. The state
space (SS) heuristic that we present in this paper is typically for
flow shop scheduling. In project scheduling, the emphasis is
placed on how to allocate scarce resources to dependent activities
or operations of a project to control the budget or minimize the
duration of the project [6,7]. These dependent activities or
operations are normally arranged in a hierarchy, commonly
known as a precedence diagram. If the sequence of a series of
projects needs to be adaptively adjusted in order to minimize the
duration to complete all projects, the SS heuristic may be applied.

Currently, OKP management primarily uses priority dispatch-
ing rules (PDRs) to deal with disturbances. It is fast and simple to
use PDRs to control production online, but PDRs depend heavily
on the configuration of shop floors, characteristics of jobs, and
scheduling objectives [8], and there is no specific PDR that clearly
dominates the others [9]. Moreover, the performance of PDRs is
poor on some scheduling objectives [10], and it is especially
inconsistent when a processing constraint changes [11]. Conse-
quently, there is a considerable difference between the scheduled
and actual production progress [12]: when unexpected changes

Contents lists available at ScienceDirect

journal homepage: www.elsevier.com/locate/caor

Computers & Operations Research

0305-0548/$ - see front matter & 2010 Elsevier Ltd. All rights reserved.

doi:10.1016/j.cor.2010.05.002

� Corresponding author. Tel.: +1 403 220 4142; fax: +1 403 282 8406.

E-mail address: paultu@ucalgary.ca (Y. Tu).

Computers & Operations Research 38 (2011) 267–276

www.elsevier.com/locate/caor
dx.doi.org/10.1016/j.cor.2010.05.002
mailto:paultu@ucalgary.ca
dx.doi.org/10.1016/j.cor.2010.05.002
dx.doi.org/10.1016/j.cor.2010.05.002


occur and PDRs are used to adaptively control production,
production often runs in a chaotic or an ‘‘ad hoc fire fighting’’
manner [13,14].

Indeed, due to dynamic disturbances, OKP has to be adaptively
scheduled and controlled [2,14]. When adaptive production
control is taken into consideration, a closed-loop control structure
is necessary and an efficient heuristic is critical. We propose a
state space (SS) heuristic to support a computer-aided production
scheduling and control system. We compare the optimality of our
SS heuristic in terms of minimizing the maximum completion
time, to the CDS heuristic [15] and to the NIS heuristic [16] using
case studies based on well-accepted benchmarks, for both
traditional flow shop (TFS) and hybrid flow shop (HFS) problems
under no pre-emption or no wait processing constraints. Both the
CDS and NIS heuristics use Johnson’s algorithm as their core. In
addition to its self-contained performance, we believe that our SS
heuristic – because of its simplicity and computational efficiency
– has the potential to become a core heuristic.

We find that across our different case studies the SS heuristic
outperforms the CDS and NIS heuristics. In addition, in a real
industrial application at an OKP company, Gienow Windows
and Doors, our production scheduling and control system
based on the SS heuristic reduced the company’s original
scheduling period using PDRs by an order of magnitude from 3
days to 2 h, providing the company significant flexibility and
competitiveness.

The rest of this paper is organized as follows: Section 2 gives a
brief literature review. Section 3 introduces the SS heuristic.
Section 4 presents the scheduling system and a closed-loop
control structure for adaptive control in OKP. Section 5 gives the
results from our case studies on TFS and HFS problems under no
pre-emption or no wait processing constraints, operator absence
disturbances, and in an industrial setting. We also provide a
possible extension of our SS heuristic. Finally, Section 6 draws
conclusions and proposes future work.

2. Literature review

Research in production scheduling has been carried out for
many decades, and there are numerous scheduling methods
developed in the literature. In this section, we briefly review flow
shop production scheduling methods, and discuss the require-
ments of heuristics for adaptive production control.

Scheduling is a decision making process of allocating resources
to jobs over time to optimize one or more objectives. According to
[17], one type of flow shop consists of m-machines in series, and
each job has to be processed on each one of m-machines in a
single direction, which means first on machine 1, then machine 2,
and so on. This is typically called a traditional flow shop (TFS).
Another type of flow shop where there are S-stages in series with
a number of machines/operators in parallel in each stage is a
flexible flow shop or hybrid flow shop (HFS). In addition to the
difference in flow shop configurations, processing constraints are
also different for TFS and HFS. For TFS, if the first in first out (FIFO)
discipline is applied to jobs in work-in-process (WIP) inventories,
then it becomes a no pre-emption or permutation (prmu) flow
shop problem. For HFS, if the first come first serve (FCFS)
discipline is applied, then it is still a no pre-emption flow shop
problem but the output sequence from each stage may change.
Another processing constraint could be no wait (nwt), that is, jobs
are not allowed to wait between two machines or stages, which
also means there is no intermediate storage. The most common
objective of flow shop scheduling is to minimize the maximum
completion time or makespan, that is, min(Cmax). Following the
popular three parameter notation, a/b/g, the above problems can

be expressed as Fm/prmu/Cmax for m-machine TFS problems with
no pre-emption constraint to minimize makespan, Fm/nwt/Cmax

for m-machine TFS problems with no wait constraint to minimize
makespan, FFs/FCFS/Cmax for S-stage HFS problems with FCFS

constraint to minimize makespan, or FFs/nwt/Cmax for S-stage HFS
problems with no wait constraint to minimize makespan.

Gupta and Stafford [18] chronologically reviewed flow shop
scheduling research in the past five decades since the classic
Johnson’s algorithm in 1954. They found that the emergence of
NP-completeness theory in the third decade (1975–1984) pro-
foundly impacted the direction of research in flow shop schedul-
ing. That is why heuristics are required to solve large problems.
HFS problems emerged in the fourth decade (1985–1994), and
various artificial intelligence based heuristics were proposed then.
The fifth decade (1995–2004) witnessed the proliferation of
various flow shop problems, objective functions, and solution
approaches. Although flow shop scheduling has been researched
for more than 50 years, there remains a large gap between
theoretical research and industrial applications [18].

Framinan et al. [19] proposed a general framework for the
development of heuristics which consists of three phases: index
development, solution construction, and solution improvement.
Phase I, index development, means that jobs are arranged
according to a certain property based on processing times. For
example, Campbell et al. [15] extended Johnson’s algorithm and
proposed the CDS heuristic for an n-job m-machine TFS problem
to min(Cmax). The CDS heuristic using Johnson’s algorithm to
arrange jobs is as follows. If there is a counter (Ctr) pointing to a
machine j, then for each job i (i¼1,y, n) the sum of processing
times on the first Ctr machines is regarded as its processing time
on virtual machine 1, and the sum of processing times on the rest
m�Ctr machines as its processing time on virtual machine 2. Then
apply Johnson’s algorithm to this virtual 2-machine flow shop
problem to get a sequence. As Ctr changes from 1 to m�1, m�1
sequences are generated, and the one with the minimum
makespan is the final solution. In phase II, solution construction,
a solution is constructed by a recursive procedure, trying to insert
one or more unscheduled jobs into a specific position of a partial
sequence until the final schedule is completed. NEH [20] is a
typical phase II heuristic for an n-job m-machine TFS problem to
min(Cmax). The NEH procedure is as follows. Firstly, for each job,
NEH sums the processing times on all of m-machines, and then
arranges these sums in a non-ascending order. Secondly, NEH
schedules the first two jobs to get a partial sequence, and then
inserts the third job into three possible positions to get another
partial sequence, and so on. Finally, NEH inserts the last job into n

possible positions, and then determines the final schedule. In
phase III, solution improvement, there are two main character-
istics. The first is that there must be an initial schedule, and the
second is, after using artificial intelligence techniques, the quality
of solution is better than the initial schedule. For the future
development of heuristics, Framinan et al. [19] clearly stated the
importance of heuristic development in phase I, index develop-
ment, should not be underestimated, as it is required for the other
two phases.

In a case study including 19 constructive heuristics for
Fm/prmu/Cmax problems, Ruiz and Maroto [10] concluded that
the NEH heuristic is best, the CDS heuristic is 8th, and two PDRs
(LPT and SPT rules) are the worst. However, the CDS heuristic has
the simplest computational complexity among the first 8
heuristics, O(m2n+mn log n). Moreover, King and Spachis [11]
did case studies of 5 PDRs and the CDS heuristic for two different
TFS problems, Fm/prmu/Cmax and Fm/nwt/Cmax. They concluded
that the CDS heuristic and LWBJD (least weighted between jobs
delay) rules work best for Fm/prmu/Cmax problems and MLSS
(maximum left shift savings) rule works best for Fm/nwt/Cmax

W. Li et al. / Computers & Operations Research 38 (2011) 267–276268



Download	English	Version:

https://daneshyari.com/en/article/476064

Download	Persian	Version:

https://daneshyari.com/article/476064

Daneshyari.com

https://daneshyari.com/en/article/476064
https://daneshyari.com/article/476064
https://daneshyari.com/

