
A differential evolution algorithm with self-adapting strategy and
control parameters

Quan-Ke Pan a, P.N. Suganthan b,�, Ling Wang c, Liang Gao d, R. Mallipeddi b

a College of Computer Science, Liaocheng University, Liaocheng 252059, PR China
b School of Electrical and Electronic Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore
c Tsinghua National Laboratory for Information Science and Technology (TNList), Department of Automation, Tsinghua University, Beijing 100084, PR China
d State Key Laboratory of Digital Manufacturing Equipment & Technology in Huazhong University of Science & Technology, Wuhan 430074, PR China

a r t i c l e i n f o

Available online 23 June 2010

Keywords:

Differential evolution

Evolutionary algorithm

Global numerical optimization

Parameter adaptation

Strategy adaptation

Continuous optimization

a b s t r a c t

This paper presents a Differential Evolution algorithm with self-adaptive trial vector generation

strategy and control parameters (SspDE) for global numerical optimization over continuous space. In

the SspDE algorithm, each target individual has an associated strategy list (SL), a mutation scaling factor

F list (FL), and a crossover rate CR list (CRL). During the evolution, a trial individual is generated by using

a strategy, F, and CR taken from the lists associated with the target vector. If the obtained trial individual

is better than the target vector, the used strategy, F, and CR will enter a winning strategy list (wSL), a

winning F list (wFL), and a winning CR list (wCRL), respectively. After a given number of iterations, the

FL, CRL or SL will be refilled at a high probability by selecting elements from wFL, wCRL and wSL or

randomly generated values. In this way, both the trial vector generation strategy and its associated

parameters can be gradually self-adapted to match different phases of evolution by learning from their

previous successful experience. Extensive computational simulations and comparisons are carried out

by employing a set of 19 benchmark problems from the literature. The computational results show that

overall the SspDE algorithm performs better than the state-of-the-art differential evolution variants.

& 2010 Elsevier Ltd. All rights reserved.

1. Introduction

The differential evolution (DE) algorithm is a simple yet
powerful search technique introduced by Storn and Price [24] for
solving complex continuous nonlinear functions. Starting from a
population of randomly initialized solutions, the DE algorithm
employs simple mutation and crossover operators to generate
new candidate solutions, and utilizes a one-to-one competition
scheme to deterministically decide whether the offspring will
replace their parents in the next generation. Due to its simplicity,
easy implementation, and fast convergence, the DE algorithm has
gained much attention with successful applications in mechanical
engineering, sensor networks, scheduling, pattern recognition and
in other domains [8,9,14,15,21,25,28,32].

There exist many different DE trial vector generation strate-
gies. These strategies often possess different searching capabil-
ities in various search phases of the evolution process. Moreover,
their associated control parameters, namely the scaling factor, F,
and the crossover rate, CR, may significantly influence the
searching accuracy and convergence speed of the DE algorithm

[3,4,10,18,30]. Therefore, it is of significance to determine suitable
trial vector generation strategies and their associated parameter
values for the DE algorithm when it is used to solve real problems
in scientific and engineering fields. Several empirical guidelines
exist in literature for choosing suitable trial vector generator
strategies and parameter settings. For example, Storn and Price
[17,23] stated that the control parameters of the DE algorithm
were not difficult to choose, and suggested that a reasonable NP

value should be between 5n and 10n, and an effective F value
should be in the range [0.4,1], where NP is the population size, and
n is dimensionality of the problem to be solved. If the problem is
near unimodal or fast convergence is desired, CR¼0.9 is a good
initial choice. Furthermore, Price [16] recommends that it is good
to set NP¼20n, K¼0.5, and F¼0.8 when the trial vector
generation strategy DE/Current-to-rand/1 is used, where K is a
scaling factor in DE/Current-to-rand/1. However, based on
parameter settings for the DE algorithm on Sphere, Rosenbrock
and Rastrigin functions, Gamperle [4] reported that choosing the
proper control parameters for the DE algorithm was more difficult
than expected, and they advised that NP should be in the range
[3n,8n], and F should be equal to 0.6 and CR is between 0.3 and
0.9. Recently, Ronkkonen et al. [22] suggested using F values in
[0.4,0.95], and the CR value in [0,0.2] for separable functions while
CR in [0.9,1] for dependent functions. Obviously, the rules for

Contents lists available at ScienceDirect

journal homepage: www.elsevier.com/locate/caor

Computers & Operations Research

0305-0548/$ - see front matter & 2010 Elsevier Ltd. All rights reserved.

doi:10.1016/j.cor.2010.06.007

� Corresponding author.

E-mail address: epnsugan@ntu.edu.sg (P.N. Suganthan).

Computers & Operations Research 38 (2011) 394–408

www.elsevier.com/locate/caor
dx.doi.org/10.1016/j.cor.2010.06.007
mailto:epnsugan@ntu.edu.sg
dx.doi.org/10.1016/j.cor.2008.12.004
dx.doi.org/10.1016/j.cor.2008.12.004


choosing the control parameters of the DE algorithm are quite
different as their validity is restricted to the problems, strategies,
and parameters values considered in the respective investigation.

The best trial vector generation strategy and the associated
parameter values can be different for different problems and even
for the same problem during different stages of the search
process. Therefore, researchers have developed some DE variants
with adaptive control parameters and trial vector generation
strategies to suit various requirements during the evolution
process. Liu and Lampinen [12] proposed a fuzzy adaptive
differential evolution (FADE) algorithm, where a fuzzy logic
controller was used to dynamically adapt the mutation and
crossover parameters. In order to retain population diversity,
Zaharie [30] proposed an adaptive DE (ADE) algorithm with
multiple populations, and an adaptive Pareto DE algorithm for
solving multi-objective optimization problems [31]. By encoding
a crossover rate into each individual, Abbass [1] developed
another self-adaptive DE algorithm for solving multi-objective
optimization problems. Omran et al. [13] presented a self-
adaptation method to control the scaling factor F analogous to
the adaptation of the crossover rate CR in [1]. This approach
(called SDE) was tested on four benchmark functions and
performed better than other versions of the DE algorithm. Teo
[27] proposed a DE algorithm with self-adapting populations,
based on Abbass’s self-adaptive Pareto DE algorithm [1]. Recently,
Brest et al. [2] presented a DE algorithm, called JDE, with self-
adapting parameters F and CR by encoding the parameters into
each individual and adapting them by means of evolution. The
authors’ experimental results showed that the JDE algorithm was
better or at least comparable to the standard DE algorithm and
evolutionary algorithms from the literature in terms of the quality
of the solutions found. In addition, the JDE algorithm gave better
results in comparison with the FADE algorithm. Based on their
former work [20], Qin et al. [19] developed a self-adaptive DE
(SaDE) algorithm for constrained real-parameter optimization, in
which both trial vector generation strategies and the associated
control parameter values were gradually self-adapted according
to the learning experiences. Later, the authors extended the SaDE
algorithm to solve unconstrained optimization problems [7], and
their experiments demonstrated [19] that the SaDE algorithm
performed much better than both the conventional DE algorithm
and several state-of-art adaptive parameter DE variants including
the ADE, SDE and JDE algorithms.

In this paper, we propose a self-adaptive DE algorithm, namely
SspDE, with each target individual having its own trial vector
generation strategy, scaling factor F and crossover rate CR. During
the evolution, both strategy and control parameters of each target
individual can be gradually self-adapted from their previous
experience in generating promising solutions. Computational
experiments and comparisons show that the proposed algorithm
overall performs better than the state-of-the-art DE variants such
as JDE and SaDE, when applied to optimize 19 benchmark global
optimization problems.

The rest of the paper is organized as follows: in Section 2, the
traditional DE algorithm is introduced. In Section 3, the SspDE
algorithm is described in detail. Section 4 lists the benchmark
problems. Experimental design and comparisons are presented in
Section 5. Finally, Section 6 gives the concluding remarks.

2. The DE algorithm

The traditional DE algorithm starts with initializing a popula-
tion of NP target individuals PG¼{X1,G,X2,G,y, XNP,G}, where
individual Xi,G ¼ ðx

1
i,G,x2

i,G, . . . ,xn
i,GÞ, i¼1,2,y, NP, is an n-dimen-

sional vector with parameter values determined randomly and

uniformly between predefined search ranges [Xmin, Xmax], where
Xmin ¼ ðx

1
min,x2

min, . . . ,xn
minÞ andXmax ¼ ðx1

max,x2
max, . . . ,xn

maxÞ. Then
mutation and crossover operators are employed to generate
new candidate vectors, and a selection scheme is applied to
determine whether the offspring or the parent survives to the
next generation. The above process is repeated until a termination
criterion is reached.

2.1. Mutation

A mutant individual, denoted as Vi,G ¼ ðv
1
i,G,v2

i,G, . . . ,vn
i,GÞ, i¼1,2,

y, NP, is generated by using a mutation operator. There are many
mutation strategies in the literature [6]. Among them, the
commonly used operator is ‘DE/rand/1’, which is described as

Vi,G ¼ Xa,GþF � ðXb,G�Xc,GÞ ð1Þ

where a, b and c are three randomly chosen indices in the range
[1, NP] such that a, b, c and i are pairwise different
ðaabaca iAf1, . . . ,NPgÞ. F40 is a mutation scaling factor which
affects the differential variation between two individuals.

2.2. Crossover

After the mutation phase, a crossover operator is applied to
each mutant individual and its corresponding target individual to
yield a trial vector, Ui,G ¼ ðu

1
i,G,u2

i,G, . . . ,un
i,GÞ. Binomial and expo-

nential crossovers are two commonly used crossover schemes
[18]. The binomial crossover is represented as follows:

uj
i,G ¼

vj
i,G if or j¼ nj

xj
i,G otherwise

8<
: ð2Þ

where the index nj refers to a randomly chosen dimension in the
set {1,2,y, n}, which is used to ensure that at least one dimension
of the trial individual, Ui,G, differs from its target vector, Xi,G. CR is
a crossover rate in the range [0,1], and rjA[0,1] is a uniform
random number. If the parameter values of the obtained trial
individuals exceed the pre-specified upper bound or lower bound,
we can set them equal to upper bound or lower bound,
respectively.

2.3. Selection

In order to decide whether or not the trial individual Ui,G

should become a member of the target population in the next
generation, a one-to-one greedy selection between a parent and
its corresponding offspring is employed in DE as this strategy
enhances diversity in comparison to other selection strategies
such as tournament selection, rank based selection and fitness
proportional selection. The one-to-one selection scheme is based
on the survival of the fitter between the trial individual Ui,G and its
target counterpart Xi,G. For minimization problems, it can be
formulated as follows [18]:

Xi,Gþ1 ¼
Ui,G if f ðUi,GÞr f ðXi,GÞ

Xi,G otherwise

(
ð3Þ

where f(Ui,G) and f(Xi,G) are the objectives of Ui,G and Xi,G,
respectively.

2.4. The algorithmic description

Based on the above initialization, mutation, crossover and
selection operations, the algorithmic description of the conven-
tional DE algorithm is summarized in Table 1.

Q.-K. Pan et al. / Computers & Operations Research 38 (2011) 394–408 395



Download	English	Version:

https://daneshyari.com/en/article/476076

Download	Persian	Version:

https://daneshyari.com/article/476076

Daneshyari.com

https://daneshyari.com/en/article/476076
https://daneshyari.com/article/476076
https://daneshyari.com/

