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a b s t r a c ta r t i c l e i n f o

Evaluation of evidence in forensic science is discussed usingposterior distributions for likelihood ratios. Instead of
eliminating the uncertainty by integrating (Bayes factor) or by conditioning on parameter values, uncertainty in
the likelihood ratio is retained by parameter uncertainty derived from posterior distributions. A posterior
distribution for a likelihood ratio can be summarised by the median and credible intervals. Using the posterior
mean of the distribution is not recommended. An analysis of forensic data for body height estimation is undertaken.
The posterior likelihood approach has been criticised both theoretically andwith respect to applicability. This paper
addresses the latter and illustrates an interesting application area.
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1. Introduction and terminology

Evaluation of evidence in forensic science can be undertaken using
the likelihood ratio framework. For a continuous random variable, the
likelihood ratio (LR) is the ratio of two values of the probability function
p(x |θ), given two values of model parameter θ, and data x. For values θ1
and θ2, we have LR=p(x |θ1)/p(x |θ2), where function p(⋅) is a generic
notation for a probability density function or a probability mass function.

Given two hypothesesH1 andH2 for assumptions for modelsM1 and
M2, respectively, the Bayes factor (BF) in favour of H1 is given by

BF ¼ p xjH1ð Þ
p xjH2ð Þ ¼

Z
pðxϕHÞp ϕjH1ð ÞdϕZ

p xjψ;H2ð Þp ψjH2ð Þdψ
: ð1Þ

The BF is also called amarginal likelihood ratio as it is the ratio of two
marginal likelihoods. It is not necessarily the case that p(x |ϕ,H1) is the
same function as p(x |ψ,H2). These probability functions are defined by
M1 and M2, respectively. The same holds for p(ϕ |H1) and p(ψ |H2). It is
because of this that the BF can be used to compare non-nested models.

If, however, M1 and M2 are nested, i.e., one can be derived from the
other by restricting a subset of the parameters, then the BF is still different
from the LR, as the latter is defined for specific parameter values and the
former is defined by integrating out the parameters. It is only in the

specific case where the priors given by p(ϕ |H1) and p(ψ |H2) identify
parameter values with probability 1 (have a point mass 1 at those
values), that the BF reduces to a LR.

The following example of a Bayes factor in forensic practice is
taken from Lucy [1] (Section 12.5). An eyewitness height description
of the male perpetrator is modelled as a normal distribution with
mean 1.816 and standard deviation 0.054. The prosecution's
hypothesis is Hp: perpetrator = suspect. The defence's hypothesis
is Hd: perpetrator ≠ suspect. The assumed population distribution
of men is normal with mean 1.775 and standard deviation 0.098.
The evidence is the height E=1.855 of the suspect.

The Bayes factor is in this case equal to the probability density of E
under Hp divided by the probability density of E under Hd. That is,
BF= f(E |μp,σp)/f(E |μd,σd), where f is the density of a normal distribution
with mean μ and standard deviation σ [1]. For μp=1.816,σp=
0.054,μd=1.775,σd=0.098 this leads to a Bayes factor of 1.951.

We would like to add the following explanation in terms of the BF.
The BF in this case is defined as

BF ¼ p EjHp
� �
p EjHdð Þ ¼

Z
p Ejθ;Hp
� �

p θjHp
� �

dθZ
p Ejη;Hdð Þp ηjHdð Þdη: ð2Þ

There are no background data, i.e., there are no sample data from the
relevant population. Themodels under both hypotheses are completely
specified normal distributions. This means that p(θ |Hp) specifies θ=
(μp,σp) with probability one. Likewise p(η |Hb) specifies η=(μd,σd)
with probability one. As a result both integrals disappear in Eq. (2)
and we end up with p(E |θ,Hp)= f(E |μp,σp) and p(E |η,Hd)= f(E |μd,σd).
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Note that there is no uncertainty associatedwith theBF. Consider the
case where background data are used for the estimation of μd and σd. In
that case, the denominator of Eq. (2) would have been

p EjHd;Bð Þ ¼
Z

p Ejη;Hd;Bð Þp ηjHd;Bð Þdη ð3Þ

¼
Z

p Ejη;Hd;Bð Þ p Bjη;Hdð Þp ηjHdð Þ
p BjHdð Þ dη; ð4Þ

where p(B |η,Hd) is the likelihood and p(η |Hd) is the prior density.
Because the BF is in this case defined conditional on background data
B, there is still no uncertainty associated with the BF. The uncertainty
with respect to η is integrated out. Nevertheless, if a new data set B
were sampled, another BF would be the result. By conditioning on B,
this sample uncertainty is not accounted for.

In Section 2, the posterior distribution of the likelihood ratio is
explained within the context of forensic science. Section 3 presents an
evaluation of evidencewhere the posterior distribution of the likelihood
ratio is used for the measurement of body height. Background data in
this case consist of measurements on test persons. A comparison is
made with the Bayes factor approach. For the posterior sampling we
use WinBUGS (Lunn et al. [2]). Section 4 concludes the paper.

2. Posterior likelihood ratio

As an alternative method for simple null hypothesis testing, Aitkin
[3] advocates using a Bayesian framework and working with the poste-
rior distribution of the LR. Instead of eliminating the uncertainty by
maximising (LR test) or by integrating (BF), Aitkin proposes to retain
uncertainty in the LR via parameter uncertainty derived from the poste-
rior distributions.

Bayesian inference focusses on the posterior density of parameters.
If θ is the parameter and x are the data, then the posterior is given by
p(θ |x)=p(x |θ)p(θ)/p(x), where p(x |θ) is the likelihood of the data
and p(θ) is the prior density of θ. Thus the posterior is proportional to
the likelihood times the prior, and this is written as p(θ |x)∝p(x |θ)p(θ).

The posterior likelihood ratio approach is readily explained in terms
of sampling. The LR is considered a function of the parameters under
both hypotheses. First, given H1: θ=θ1, the likelihood is a single value
L(θ1)=p(x |θ1). Second, given H2: θ≠θ1, S parameter values θ⁎ are
sampled from the posterior p(θ |x) and for each value the likelihood
L(θ⁎) is computed. Next, the S ratios L(θ1)/L(θ⁎) provide a random sample
from the posterior of the LR.

At first sight, the setting in Aitkin [3] is different from the forensic
science setting. For the former, there is a data set and a model, and the
hypotheses are about model parameters. For the latter, there is evidence
E and background data B, and the hypotheses are about E - not about
the model for B.

For the forensic science setting, we can define an LR given an estimate
of model parameters for B. This only works if we assume that both the
prosecution and the defence accept the same model for B. If the model
parameter vector is denoted θ, then we can define a likelihood ratio as
the ratio of two probability densities for the evidence. This conditional
ratio is given by

LR ¼ p EjHp; θ� �
p EjHd; θð Þ : ð5Þ

For the forensic science setting, the BF is defined as

BF ¼ p EjHp;B
� �
p EjHd;Bð Þ ¼

Z
p EjHp; θp� �

p θpjB� �
dθpZ

p EjHd; θdð Þp θdjBð Þdθd ; ð6Þ

where p(θp |B) and p(θd|B) are posterior densities.

Given these definitions of BF and LR, we can apply the ideas of the
posterior likelihood ratio and achieve a middle way between BF and LR
such that the uncertainty in the LR is retained by parameter uncertainty
derived from the posterior distribution of the model parameter vector
for the background data. Thus we see LR as a function of sampled θ,
and obtain its posterior by sampling from the posterior p(θ |B).

The posterior LR distribution is very useful as it can be used to
assess the strength of evidence by way of posterior probabilities such as
P(LRNc), for any cN0. In thisway it is possible to not only have knowledge
about the central location of the LR, but also about the precision that is at-
tached. For the end user of the LR (trier of fact) it may be important to
know whether for a reported LR of 1000, a 5% lower bound is e.g. 20 or
990.

Care has to be taken not to summarise the posterior distribution of the
likelihood ratio by its posterior mean. The posterior mean is not invariant
under the switching of the order of the hypotheses in the sense that

Eθ p EjHp; θ� �
p EjHd; θð Þ
� �

≠ Eθ p EjHd; θð Þ
p EjHp; θ� �
" # !−1

: ð7Þ

This is important since the order of the hypotheses should not
effect the statistical inference. Instead of assessing the posterior
mean, the posterior median and credible intervals can be used for
statistical inference.

3. Evaluation of evidence

In this section, the posterior of the likelihood ratio (5) is used for
forensic data for height estimation of a perpetrator. A comparison
with the Bayes factor (6) is made.

A perpetrator was well visible on a security camera and one image
was chosen as the basis of height measuring. Background data B consist
of additional measurements of six test persons who were positioned in
the same stance as the perpetrator in front of the original camera
(Edelman et al. [4]).

We use the following notation. Background data are measurements
mi, for test persons i=1,2, . . . ,6, and known true heights hi. Themodel
for the height estimation is

mi ¼ α þ hi þ εi with εi � N 0;σ2� �
; ð8Þ

where α is the systematic measurement error, see Van den Hout and
Alberink [5] for an extended model and details of the data. Let θ=
(α, log(σ)).

The evidence is the measured height mp of the perpetrator. The
height of the suspect is hs. The prosecution's hypothesis isHp: perpetrator
is suspect (hp=hs). The defence's hypothesis is Hd: perpetrator is not
suspect (hp≠hs). Assume that both theprosecution and thedefence accept
model (8). The BF is given by

BF ¼ p mpjHp;B
� �

p mpjHd;B
� � ¼ p mpjhp ¼ hs;B

� �Z
p mpjhp ¼ h;B
� �

p hð Þdh
ð9Þ

¼

Z
p mpjθ;hp ¼ hs
� �

p θjBð ÞdθZ Z
p mpjθ;hp ¼ h
� �

p hð Þdh
� �

p θjBð Þdθ: ð10Þ

Let us assume that the height distribution of the population is given
by p(h |μh,σh), a normal distribution with known mean μh and known
standard deviation σh. The conditional LR is given by

LR ¼ p mpjhp ¼ hs; θ� �Z
p mpjhp ¼ h; θ� �

p hjμh;σhð Þdh
: ð11Þ
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