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In this paper, we consider the problem of scheduling n independent jobs preemptively on m identical
parallel machines, to minimize the total completion time (makespan). Each job Ji (i = 1,n) has a pro-
cessing time pi and the transportation of an interrupted job from a machine Mj to another machine
Mj′ requires djj′ units of time. We propose a linear programming formulation in real and binary deci-
sion variables and we prove that the problem is NP-hard. Some subproblems are analyzed and solved
by polynomial algorithms. Finally we present some heuristics and give some lower bounds of the
makespan.

© 2008 Elsevier Ltd. All rights reserved.

1. Introduction

The problem that we consider is that of scheduling a set of n
independent and preemptable jobs J1, J2, . . . , Jn onm identical parallel
machines M1,M2, . . . ,Mm. Each job Ji (i = 1, . . . ,n) has a processing
time pi. Each machine can process at most one job at a time, and
each job can be processed by at most one machine at a time. If a job
Ji processed on the machine Mj is interrupted and moved to another
machine Mj′ its transport requires djj′ units of time, which is called
the transportation time. The goal is to schedule the jobs so as to
minimize the makespan.

By using the three-field notation as in [1], the problem thus de-
fined is denoted �/pmtn(�)/Cmax, where � ∈ {Pm, P} and � is either
delay (arbitrary transportation times) or delay = d (identical trans-
portation times).

Scheduling problems with preemption are largely studied in lit-
erature. Preemption of a job means that processing may be inter-
rupted and resumed at a later time, even on another machine. A job
may be interrupted finitely many times. The first work concerning
the preemptive scheduling problems on parallel machines started at
the end of the fifties with Mc Naughton. This problem is denoted by
P/pmtn/Cmax and can be solved in linear time using Mc Naughton's
algorithm.

Since then, several cases have been studied, some are polyno-
mials (using linear programming or specific methods), we cite:
Q/pmtn, ri/Cmax, P/pmtn,pi =1/

∑
wiCi, Q/pmtn/Lmax, Q/pmtn, ri/Lmax
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and R/pmtn, ri/Lmax. Others are NP-hard, we cite as example:
P2/pmtn, ri/

∑
Ci, P2/pmtn/

∑
wiCi, P2/pmtn, ri/

∑
Ui, P/pmtn/

∑
Ui

and Q2/pmtn/
∑

wiUi (see [2–7] for all details).
In [8] the problem which consists in scheduling n indepen-

dent jobs, where each job has processing time pi, a release time
ri and simultaneously requires at every time mi�m machines for
its processing, is studied for both of the preemptive and the non-
preemptive cases. Such problems are denoted by P/pmtn, ri,mi/Cmax
and P/ri,mi/Cmax, respectively.

Among the problems that are considered in the literature are
the ones with setup time constraints (called also changeover times).
They express the necessary time needed to pass from the processing
of one job to another. This time may represent the time used for
the machines adjustment, change of tools, cleaning of some parts of
the machines or the control of the machines. In the literature these
problems are referred to as “scheduling problems with changeover
times” or “scheduling problems with transportation times”, for
several cases where we assume that there is sufficient trans-
portation capacity to handle all jobs to be transported simultaneo
usly.

In the literature dealing with those problems with changes de-
pending on the sequence of the jobs processed on the same machine,
there is an analogy between these problems for the minimization of
Cmax and the vehicles routing problem.

Chu and Yalaoui [9] presented a heuristic solving the problem that
minimizes themakespan on identical parallel machines, in which the
transportation times between jobs and the possibility of job splitting
are considered. Boustta [10] studied the case of a multi-arm injec-
tion machine with multiple adjustments to minimize the maximum
flow time. He related the problem to the one with identical parallel
machines with adjustment times.
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Other problems with the same type of constraints are studied for
different criteria. For example, one can cite Adjallah et al. [11] who
considered the problem with family setup times, which means that
the jobs form different families and the passage from one family to
another on the same machine requires a setup time independent
from the jobs sequence, in the aim of minimizing the weighted sum
of the completion times. They have proposed three heuristics for the
resolution and have given one application to the tasks management
of preventive maintenance.

The aspect of transportation of preempted jobs in schedul-
ing on identical parallel machines has been studied in [1].
In this paper, all transportation times called migration de-
lays are identical and equal to d. Authors showed that the
subproblem of P/pmtn(delay = d)/Cmax with delay d at most
max{max1� i�n {pi}, (1/m)

∑n
i=1 pi} − max1� i�n {pi} can be solved

in linear time. Further, they showed that for any constant � >0
the subproblem of P/pmtn(delay = d)/Cmax with d larger than
max{max1� i�n {pi}, (1/m)

∑n
i=1 pi} − max1� i�n {pi} is NP-hard in

the strong sense. They also gave initial results supporting a conjec-
ture that there always exists an optimal schedule in which at most
m − 1 jobs migrate. Then they gave a O(n) time O(1 + 1/log2 n)-
approximation algorithm for m=2, and showed that there is a poly-
nomial time approximation scheme (PTAS) for arbitrary m. Also, a
preemptive version of the flexible job shop problem [12], which is a
generalization of the classical job shop scheduling problem in which
for every operation there is a group of machines that can process it,
has been studied with migration of jobs and a (2+ �)-approximation
algorithm has been presented.

In classical scheduling models the transportation (or migration)
of a job is done without any delay constraint. However, in [1] it is
mentioned that in production planning, for example, it is natural
to allow some time for the transition of a product from one ma-
chine to another. However, the transportation of the product takes
time, and also technical issues might make it necessary to wait
for some time; a heated product might need to cool down first,
or a product needs to dry before its next operation starts. Thus,
in production workshops where a preempted job is processed on
two different machines can require a considerable transportation
time which is not taken into account in the classical models. It can
also be found in the case of the multi-site manufactures where the
treatment of a semi-finite product is realized on distant sites, the
near-completed products are transported from one site to another
in a well-determined span of time; here a site is considered as a
machine.

This article is organized as follows: the second section is de-
voted to the mathematical formulation and the proof of the NP-
hardness of the problem. In the third section we propose lower and
upper bounds and consider some subproblems that can be solved
polynomially. As for the fourth section some heuristics are pre-
sented for the resolution of the problem and some numerical tests
are carried out to test the performance of different heuristics in
the last section. Finally, a conclusion is given at the end of this
article.

2. Modeling and complexity

We propose a linear programming formulation with binary deci-
sion variables. For this, we define the following variables:

• qij: the shared part of processing time of the job Ji on the machine

Mj, qij�0 for all i = 1,n and all j = 1,m.
• Binary variables xij defined by: xij = 1 if and only if the job Ji is

processed on the machine Mj for qij �0 units of time, for all i=1,n

and all j = 1,m.

• tij: represents the processing starting time of the job Ji on the

machine Mj, tij�0 for all i = 1,n and all j = 1,m.
• Binary variables �iji′j′ defined as follows: �iji′j′ = 1 if and only if

tij� ti′j′ , the variable �iji′j′ expresses that a job Ji processed on the
machine Mj begins its processing before the job Ji′ processed on
the machine Mj′ .
�iji′j′ variables are only defined for all i, i′ = 1,n (i� i′) and all j =
j′ = 1,m (all possible pairwise jobs on each machine) and for all
i= i′ = 1,n and all j, j′ = 1,m (j� j′) (all possible pairwise machines
for each job).

Let y be the length of the scheduling to be minimized.
In a given feasible solution for the model, only tij variables where

xij = 1 are interesting and are used to find the optimal solution, all
the others are insignificant and their values cannot be considered by
the user. A similar remark is also valid for �iji′j′ variables: only �iji′j′
variables where xij = 1 and xi′j′ = 1 are interesting and are used to
determine the optimal solution.

We must take into account the following constraints:

• The sum of all shared parts of processing time of each job must be
equal to its processing time, that is:

∑m
j=1 qij = pi for all i = 1,n.

• If a job Ji begins its processing at the time tij on a machine Mj
for qij units of time, it must finish before the date y, therefore:

tij + qij�y for all i = 1,n and all j = 1,m.
• For any pair of different jobs Ji and Ji′ processed on the “same

machine” Mj, either the job Ji precedes the job Ji′ or the inverse,
thus we have either �iji′j = 1 and tij + qij� ti′j or �iji′j = 0 and
ti′j + qi′j� tij. Hence we will have:

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

tij + qij − ti′j
� (1 − �iji′j)B

ti′j + qi′j − tij��iji′jB

�iji′j + �i′jij = 1

for all i, i′ = 1,n (i� i′) and all j = 1,m,

where B is a large enough number.
• For an interrupted job Ji on the machine Mj and transported to

“another machine” Mj′ , either the job begins its processing on the
machine Mj and continues on the machine Mj′ or the inverse, thus
we have either �ijij′ = 1 and tij + qij + djj′ � tij′ or �ijij′ = 0 and
tij′ + qij′ + dj′j� tij; we then obtain

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

tij + qij + xijdjj′

−tij′ � (1 − �ijij′ )B

tij′ + qij′ + xij′dj′j

−tij��ijij′B

�ijij′ + �ij′ij = 1

for all i = 1,n and all j, j′ = 1,m (j� j′).

• For any job Ji and any machine Mj, if qij = 0 then the job Ji is not
processed on the machine Mj, as a result xij will obligatorily be

equal to 0, therefore: xij�qijB for all i = 1,n and all j = 1,m.
• For any job Ji and any machine Mj, if qij �0 then the job Ji is

processed on the machine Mj (xij =1) for qij units of time, thus we

will have: xijB�qij for all i = 1,n and all j = 1,m.

The number of variables and the number of constraints of a linear
model are two indexes by which we can measure the dimension and
the effectiveness of the given formulation. The number of variables
of our model is nm + nm + nm + (n(n − 1)m + nm(m − 1)) + 1 =
nm(n + m + 1) + 1 and the number of its constraints is equal to
n+nm+3(n(n−1)m)+3(nm(m−1))+nm+nm=n+3nm(n+m−1) and
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