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This paper presents a novel discrete differential evolution (DDE) algorithm for solving the no-wait flow
shop scheduling problems with makespan and maximum tardiness criteria. First, the individuals in the
DDE algorithm are represented as discrete job permutations, and new mutation and crossover operators
are developed based on this representation. Second, an elaborate one-to-one selection operator is designed
by taking into account the domination status of a trial individual with its counterpart target individual
as well as an archive set of the non-dominated solutions found so far. Third, a simple but effective local
search algorithm is developed to incorporate into the DDE algorithm to stress the balance between global
exploration and local exploitation. In addition, to improve the efficiency of the scheduling algorithm,
several speed-up methods are devised to evaluate a job permutation and its whole insert neighborhood
as well as to decide the domination status of a solution with the archive set. Computational simulation
results based on the well-known benchmarks and statistical performance comparisons are provided. It is
shown that the proposed DDE algorithm is superior to a recently published hybrid differential evolution
(HDE) algorithm [Qian B, Wang L, Huang DX, Wang WL, Wang X. An effective hybrid DE-based algo-
rithm for multi-objective flow shop scheduling with limited buffers. Computers & Operations Research
2009;36(1):209–33] and the well-known multi-objective genetic local search algorithm (IMMOGLS2)
[Ishibuchi H, Yoshida I, Murata T. Balance between genetic search and local search in memetic algorithms
for multiobjective permutation flowshop scheduling. IEEE Transactions on Evolutionary Computation
2003;7(2):204–23] in terms of searching quality, diversity level, robustness and efficiency. Moreover, the
effectiveness of incorporating the local search into the DDE algorithm is also investigated.

© 2008 Elsevier Ltd. All rights reserved.

1. Introduction

No-wait flow shop scheduling problem is a typical scheduling
problem with strong engineering background, which has important
applications in different industries including chemical processing,
food processing, concrete ware production and pharmaceutical pro-
cessing [1–6]. A comprehensive survey paper on the research and
applications of the no-wait flow shop scheduling problem can be
found in Ref. [4].

In a no-wait flow shop scheduling problem, the processing of
each job has to be continuous, i.e., once a job is started on the
first machine, it must be processed through all machines without
any interruption. Thus, when needed, the start of a job on the first

∗ Corresponding author. Tel.: +861062783125272; fax: +861062786911.
E-mail address: wangling@mail.tsinghua.edu.cn (L. Wang).

0305-0548/$ - see front matter © 2008 Elsevier Ltd. All rights reserved.
doi:10.1016/j.cor.2008.10.008

machine must be delayed in order to satisfy the no-wait constraint.
Given the processing time of each job on each machine, the no-
wait flow shop scheduling problem is to find a schedule or a set
of schedules so that one or multiple criteria are optimized. For the
no-wait flow shop scheduling problems with single objective, it is
strongly NP-hardwhen the number ofmachines ismore than two [7].
Therefore, in the past decades, efforts have been dedicated to obtain
high-quality solutions in generally acceptable time and memory re-
quirements by heuristic optimization techniques. These solutions
techniques can be found in Refs. [8–12]. To attain a better solution
quality, meta-heuristics have grown quickly with the development of
computer technology, e.g., genetic algorithm (GA) [13], simulated an-
nealing (SA) algorithm [6,14], hybrid GA and SA algorithm [15], vari-
able neighborhood search (VNS) algorithm [15], descending search
algorithm [16], tabu search (TS) algorithm [16], iterated greedy (IG)
algorithm [17], hybrid particle swarm optimization (PSO) algorithm
[18] and discrete PSO algorithm [19,20].
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However, most real-life no-wait flow shop scheduling problems
naturally involve the optimization of multiple conflicting objec-
tives. Therefore, it is more important to develop multiple objective
scheduling technologies and approaches for the no-wait flow shop
scheduling problems. Although meta-heuristics has been widely
extended to the multi-objective scheduling problems [1–2,21–30]
since the late 1980s, only a few papers were focused on scheduling
problems with the no-wait requirement. To the best of our knowl-
edge, Aliahverdi and Aldowaisan [31] were the first to develop a
hybrid SA algorithm and a hybrid genetic heuristics for no-wait
flow shop scheduling problems with makespan and maximum late-
ness criteria, where a weight sum of both criteria was addressed.
Recently, Tavakkoli-Moghaddam et al. [32] presented a hybrid
multi-objective immune algorithm to find Pareto-optimal solutions
for no-wait flow shop scheduling problems with weighted mean
completion time and weighted mean tardiness criteria. With regard
to the complexity of the multi-objective flow shop scheduling prob-
lems, it was shown in [33] that considering more than one objective
did not simplify the scheduling problem, and it was further proved
in [34] that multi-objective scheduling problems were as complex
as the corresponding single objective problems.

This paper develops a novel differential evolution (DE) algo-
rithm for solving the no-wait flow shop scheduling problems with
makespan and maximum tardiness criteria. The DE algorithm is one
of the latest evolutionary optimization methods proposed by Storn
and Price [35] for complex continuous non-linear functions. In the
DE algorithm, simple mutation and crossover operators are used
to generate new candidate solutions and a one-to-one competition
scheme is applied to greedily determine the new target individuals
for next generation. Due to its simplicity, easy implementation and
quick convergence, the DE algorithm has gained much attention
and a wide range of successful applications [36–41]. However, be-
cause of its continuous nature, the applications of the DE algorithm
to production scheduling problems are still very limited [40,41].
Therefore, in this paper, a discrete DE (DDE) algorithm is presented.
First, individuals in the DDE algorithm are represented as discrete
job permutations, and the job-permutation-based mutation and
crossover operators are developed to generate candidates. Second,
an elaborate one-to-one selection scheme is designed by consider-
ing the domination status of a candidate with its counterpart target
individual as well as an archive set of the non-dominated solutions
found so far. Third, an effective local search algorithm is developed
to merge into the DDE algorithm to balance global exploration
and local exploitation. Furthermore, several speed-up methods are
devised to evaluate a job permutation and its whole insert neigh-
borhood as well as to decide domination status of a solution with
the archive set so as to improve the efficiency of the scheduling
algorithm. Simulated results and comparisons demonstrate the ef-
fectiveness of the proposed DDE algorithm for the no-wait flow
shop scheduling problems with makespan and maximum tardiness
criteria.

The rest of the paper is organized as follows. In Section 2, the no-
wait flow shop scheduling problem with makespan and maximum
tardiness criteria is stated and formulated. In Section 3, the DDE
algorithm is proposed and described in detail. The computational
results and comparisons are provided in Section. 4 Conclusions are
presented in Section 5.

2. No-wait flow shop scheduling problem

2.1. No-wait flow shop scheduling problem

The no-wait flow shop scheduling problem can be described as
follows: Each of n jobs from set J = {1, 2, . . . ,n} will be sequenced
through m machines (k = 1, 2, . . . ,m). Job j ∈ J has a sequence of

m operations (oj1, oj2, . . . , ojm) and a given due date d(j). Operation
ojk corresponds to the processing of job j on machine k during an
uninterrupted processing time p(j,k). At any time, each machine can
process at most one job and each job can be processed on at most
one machine. To follow the no-wait restriction, the completion time
of the operation ojk must be equal to the earliest start time of the
operation oj,k+1 for k=1, 2, . . . ,m−1. In other words, theremust be no
waiting time between the processing of any consecutive operations
of each of n jobs. The problem is, then, to find a schedule such that
the processing order of jobs is the same on each machine and the
given criteria are optimized.

In this paper, two objectives to be minimized are considered. The
first one is the maximum completion time or makespan. Suppose
that a job permutation � = {�1,�2, . . . ,�n} represents a schedule of
jobs to be processed. Let e(�j−1,�j) be the minimum delay on the
first machine between the start of jobs �j−1 and �j restricted by
the no-wait constraint when the job �j is directly processed after the
job �j−1. Then the completion time C(�j,m) of job �j on machine m
can be computed by the following formula [16]:

C(�1,m) =
m∑

k=1

p(�1, k) (1)

C(�j,m) =
j∑

i=2

e(�i−1,�i) +
m∑

k=1

p(�j, k), j = 2, 3, ...,n (2)

And e(�j−1,�j) can be computed as follows [16]:

e(�j−1,�j) = Fj−1,j(�j,m) −
m∑

k=1

p(�j, k) for j = 2, ..,n (3)

where Fj−1,j(�j,m) denotes the makespan of jobs �j−1 and �j in
the 2-machine permutation flow shop scheduling problem. So, the
makespan of the schedule � = {�1,�2, ...,�n} is given as follows:

Cmax(�) = C(�n,m) (4)

The second objective is the maximum tardiness, which is given
as follows:

Tmax(�) = n
max
j=1

(max(0,C(�j,m) − d(�j))) (5)

As an example, consider a 3-job and 3-machine problem with a
processing time matrix

(p(j, k))3×3 =
⎡
⎣2 2 3
1 3 3
2 2 2

⎤
⎦

and a due date matrix

(d(j))1×3 =
⎡
⎣ 7

9
10

⎤
⎦

Suppose that a schedule is �={1, 2, 3}, and its Gantt chart is drawn
in Fig. 1. According to Eqs. (3)–(5), the minimum delay on the first
machine, makespan and maximum tardiness are given as follows:
e(1,2) = 3; e(2,3) = 3; Cmax(�) = 12 and Tmax(�) = 2.

2.2. Short cut to evaluate a job permutation

For the no-wait flow shop scheduling problem, since
∑m

k=1p(�j, k)
and e(�j−1,�j) can be computed in advance and be used in the eval-
uation of a job permutation, the time complexity of Eq. (4) is O(n)
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