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a b s t r a c t

Ecosystem service maps are increasingly being used to prioritize management and conservation deci-
sions. Most of these maps rely on estimates of ecosystem services estimated for individual land cover
classes rather than incorporating field data. We developed combined field models (CFM) using regression
analysis to estimate ecosystem services based on the observed relationship between environmental and
land cover data and field measurements of ecosystem services. Local ecosystem service supply was es-
timated from vegetation data measured at fifty sites covering the widest range of environmental con-
ditions across a watershed in Mexico. We compared the accuracy of the CFM approach for forage, timber,
firewood and carbon storage over a more commonly “look up table” method relying on a uniform esti-
mate of ecosystem service supply by land cover type. The CFM revealed higher accuracy when compared
to the “look up table” approach. The resulting CFM models explained a large fraction of the variance (42–
89%) using a combination of land cover, remote sensing data, hydrology and distance from developed
areas. In addition, mapping residuals from Geographically Weighted Regressions provided an estimate of
uncertainty across the CFM model results. This approach provides better estimates of ecosystem service
delivery and uncertainty for land managers and decision-makers.

& 2016 Elsevier B.V. All rights reserved.

1. Introduction

The Ecosystem Services (ES) concept has become widely used
because it connects ecosystem benefits to human wellbeing (Bürgi
et al., 2014). International policy is now embracing and in-
corporating the conservation and management of ES along with
biodiversity. For example the Convention on Biological Diversity
(CBD) explicitly included ecosystem services conservation in the
Aichi Targets (CBD, 2010) and the creation of the Intergovern-
mental Science-Policy Platform on Biodiversity and Ecosystem
Services (Perrings et al., 2011). Still a major endeavor for the ef-
fective integration of ES in decision-making is to develop solid

methods for mapping and assessing ES useful for the multiple
objectives assessed by these policies (Maes et al., 2013).

Ecosystem Services (ES) maps are increasingly used to highlight
key areas of ES supply, to assess spatial trade-offs and synergies
among multiple ES and biodiversity and to improve land use
planning tools for biodiversity and ES conservation and manage-
ment (Seppelt et al., 2011; Martinez-Harms and Balvanera, 2012;
Sousa et al., 2016). Maps of ES now play a key role in policy and
decision-making; in fact, the European Union's Biodiversity
Strategy, explicitly requires Member States to map ES (Maes et al.,
2013). The value of ES maps depends on their accuracy and
adoption rate by decision makers for use in land use planning
(Martinez-Harms et al., 2015; Atkinson et al., 2016).

A range of modeling techniques have been used to map ES
(Martinez-harms and Balvanera 2012; Crossman et al., 2013; Wolff
et al., 2015) and the resulting spatial patterns observed are highly
dependent on the methods used (Anderson et al., 2009; Eigenbrod
et al., 2010a). The choice of an ES spatial model will depend on the
level of accuracy needed for the decision making application and
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this will determine how complex the spatial models need to be
(Schröter et al., 2014). It will also depend on data availability and
the associated costs on building the desired maps. Many policy
applications often involve large spatial scales (e.g. national, re-
gional, provincial) for which gathering primary data would involve
significant investment beyond what is generally available, espe-
cially in developing countries (Wong et al., 2015).

The most common technique used to address this data gap is to
model ES relying on secondary data, information readily available
from external sources like land cover, geographical databases, re-
mote sensed data among others (Martinez-Harms and Balvanera,
2012). Land cover data is the most common used due to the
widespread availability of this information. Examples include
benefit transfer approaches using the economic value of ecosys-
tem services from one location to estimate ecosystem service va-
lues at other locations with similar environmental conditions
(Wong et al., 2015) and Look Up Tables (LUT) that rely on constant
or average values of ecosystem services by land cover type to
target important areas for ecosystem services (e.g. Lautenbach
et al., 2011; Burkhard et al., 2012; Schröter et al., 2014). However,
assigning a single value of ES to each land cover category is sus-
ceptible to uniformity errors, resulting in a poor fit of modeled ES
values with observed conditions (Plummer, 2009; Eigenbrod et al.,
2010b; Brown et al., 2016).

Eigenbrod et al. (2010a) and Lavorel et al. (2011) have shown
that maps based purely on broad land cover types have high levels
of error compared to maps based on primary data. ES supply varies
within and across land cover classes in real landscapes due to
biophysical (e.g. topographic, climate fluctuations) and manage-
ment (e.g. grazing or logging regimes) heterogeneity (Grêt-Re-
gamey et al., 2014), and their addition provides better models. The
improvement that may result from modeling ecosystems services
based on field data, environmental data and land cover variables
as a way of estimating ES levels has not been examined in most
regions of the world (Plummer, 2009; Eigenbrod et al., 2010a).

Some policy applications, as is the case of the design and ap-
plication of financial mechanisms for ES (Wendland et al., 2010;
Venter et al., 2013), require higher levels of accuracy (Schröter
et al., 2014; Wong et al., 2015), and have led to the use of primary
data to model ES across space. To develop more accurate estimates
of ES spatially explicit models based on field data collections from
the area of interest are in demand. An approach that relies pri-
marily on regression models to assess the relationship between
biophysical and management explanatory variables and re-
presentative field measures of ES as response variables (Lavorel
et al., 2011; Martínez-Harms and Balvanera, 2012) is presented in
this study. The application of these models hereafter called Com-
bined Field Models (CFM) explain the variation of modeled ES and
can lead to more accurate ES models.

CFM have been used to model carbon sequestration (Bowker
et al., 2008) and storage ( Krishnaswamy et al., 2009; Timilsina
et al., 2013), forage production (Malmstrom et al., 2009; Lavorel
et al., 2011), water quality (Uriarte et al., 2011), biological control
(Garcia and Martínez, 2012), pollination and soil fertility (Lavorel
et al., 2011). Given the diversity of landscapes and ecosystem
services being investigated, we need to explore the relationship
between readily available independent Geographic Information
System (GIS) variables and field measurements for estimating ES
values. Equally important, such methods have seldom been ap-
plied simultaneously to various ecosystem services (but see La-
vorel et al. (2011)). Here we test whether the addition of local field
data and a range of GIS variables improves the accuracy of ES maps
compared to LUT approaches and explore the spatial heterogeneity
in model accuracy.

2. Methods

2.1. Study area

The study was undertaken at the Cuixmala watershed, located
along the Mexican Pacific Coast at latitude between 19°21′ and
19°51′ N and 104°59′ and 104°37′W with a total area of 1080 km²,
with an elevation gradient ranging from 0 to 1730 m (see Fig. 1).
The lower part of the watershed hosts a tropical dry forest system
well known for its high biodiversity, which is protected under a
Federal level Biosphere Reserve status (Chamela-Cuixmala Bio-
sphere Reserve). The structure and functioning of these ecosys-
tems have been studied for the last 20 years and already synthe-
sized from the ES perspective (Maass et al., 2005). The rest of the
watershed is largely managed for cattle ranching, wood extraction
and biofuel extraction, while the whole area is eligible for pay-
ments for ES. Agriculture is only sparsely found in a few areas with
deep soils and access to ground water. Local associations of deci-
sion makers (including individuals working for the government
and those organized into an NGO) have been interested in de-
signing management strategies that would better align with sus-
tainability. Also comparable watersheds maybe found along most
of the Pacific Coast of Mexico.

2.2. Field sampling

Field sites were stratified across the existing biophysical gra-
dient resulting from differences in physiography and management
history based on elevation, soil, and land cover data. Fifty sites
were distributed to proportionally represent the elevation gra-
dients, soil and land cover classes (see Fig. 1). In each site we
surveyed the vegetation in 400 m2 nested plots, in which in-
dividuals of smaller sizes were measured in smaller plots of
100 m2 and 25 m2; the plots were divided into four quadrats to
assess the variability of the vegetation components inside the
sites. We used the average value of these quadrats to develop our
CFM models.

DBH and height of the individuals were measured as follows:
(i) 25 m2 quadrats were used to measure woody individuals with a
DBH greater than 1 cm; (ii) 100 m2 quadrats for those with
DBHZ2.5 cm and (iii) 400 m2 for those with DBHZ5 cm. Her-
baceous and shrub components were measured in 1 m2 plot nes-
ted within each 25 m2 quadrats, in two of these 1 m2 plots the
above-ground biomass was harvested and the samples oven dried
at 70 °C (48 h) and weighted. We only considered herbaceous and
shrub individuals between 20 cm and 1 m height.

2.3. ES definition and local quantification

Forage supply was defined as the total above-ground biomass
available for livestock fodder expressed as dry weight (kg) per unit
area (ha) (Jaramillo et al., 2003). Forage was calculated as the sum
of above-ground biomass of all the 1 m2 plots considering the
understory cover (herbaceous and shrub individuals). Timber de-
livery was defined as the volume of wood found in individual trees
of commercial size (DBH430 cm) (Balvanera et al., 2005) ex-
pressed in volume (m3) per unit area (ha). Timber delivery was
calculated by multiplying basal area (m2) of the individuals with a
DBH larger than 30 cm by the height of individuals (m) to obtain
volume (m3) per unit area (ha). Firewood was defined as all above-
ground woody biomass with DBHo30 cm expressed in tons per
hectare. Firewood supply was calculated with the allometric
equation proposed to quantify the biomass of the tropical dry
forest found in the lower part of the watershed (Martínez-Yrizar
et al., 1992). This equation uses basal area to obtain the logarithm
of biomass in tons per hectare (Martínez-Yrizar et al., 1992):
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