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In the past decade the field of cognitive sciences has seen an exponential
growth in the number of computational modeling studies. Previous work has
indicated why and how candidate models of cognition should be compared by
trading off their ability to predict the observed data as a function of their
complexity. However, the importance of falsifying candidate models in light
of the observed data has been largely underestimated, leading to important
drawbacks and unjustified conclusions. We argue here that the simulation of
candidate models is necessary to falsify models and therefore support the
specific claims about cognitive function made by the vast majority of model-
based studies. We propose practical guidelines for future research that com-
bine model comparison and falsification.

Complementary Roles of Comparison and Falsification in Model Selection
Computational modeling has grown considerably in cognitive sciences in the past decade
(Figure 1A). Computational models of cognition are also becoming increasingly central in
neuroimaging and psychiatry as powerful tools for understanding normal and pathological
brain function [1-5]. The importance of computational models in cognitive sciences and
neurosciences is not surprising; because the core function of the brain is to process information
to guide adaptive behavior, it is particularly useful to formulate cognitive theories in computa-
tional terms [6,7] (Box 1). Similarly to cognitive theories, computational models should be
submitted to a selection process. We argue here that the current practice for model selection
often omits a crucial step: model falsification (see Glossary).

One universally recognized heuristic for theory selection is Occam’s law of parsimony: ‘pluralitas
non est ponenda sine necessitate’ (plurality is never to be posited without necessity). This principle
dictates that among ‘equally good’ explanations of data, the less complex explanation should be
held as true. More formally, a trade-off exists between the complexity of a given model (which
specifically grows with its number of ‘free” and adjustable parameters) and its goodness-of-fit (the
likelihood of the observed data given the model). Different quantitative criteria (e.g., the Bayesian
information criterion, Bayes factor, and other approximations of the model evidence) have been
proposed to take model parsimony into account when comparing different models. These
criteria are based on the predictive performance of amodel, in other words its ability to predict
the observed data [8—11]. We refer to them as relative comparison criteria because they imply no
absolute criterion for model selection or rejection. Following these criteria, the ‘winning’ (or ‘best’)
model is the model with the strongest evidence (i.e., trading off goodness-of-fit with complexity)
compared to rival models [8,12]. Various statistical methods can then be used to test whether
there is significantly stronger evidence in favor of the winning model than rival models.
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Trends

Computational modeling has grown
exponentially in cognitive sciences in
the past decade.

Model selection most often relies on
evaluating the ability of candidate
models to predict the observed data.

The ability of a candidate model to
generate a behavioral effect of interest
is rarely assessed, but can be used as
an absolute falsification criterion.

Recommended guidelines for model
selection should combine the evalua-
tion of both the predictive and genera-
tive performance of candidate models.
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Box 1. Delineating Computational Modeling Approaches

In cognitive sciences, computational models can be used either as analytical tools for analyzing empirical data or as
instantiations of cognitive hypotheses. In the first case, the typical results consist of comparing model parameters
across conditions or subjects [27], in other words computational models are treated as statistical models, similar to
multiple regressions. In this approach, model comparison is not crucial because the models are not instantiations of
cognitive theories.

As instantiations of cognitive theories, computational models can target different levels of description. Clearly identifying
the target level should precede a model comparison analysis. A key distinction is between aggregate versus mechan-
istic models [9]. Aggregate models aims to describe average behaviors using a synthetic mathematical model, such as
an exponential learning curve [28]. Mechanistic models aim to explain how behaviors are generated, such as the ‘delta
rule’ in reinforcement learning [29]. Because these two types of models do not target the same level of description, there
is no reason to arbitrate between aggregate versus mechanistic models. For example, an aggregate exponential
learning curve could be derived formally from a ‘delta rule’ such that both models are equivalent. The distinction
between aggregate and mechanistic models has been further developed by Marr [6], who proposed three distinct levels
of description. The ‘computational’ level corresponds to the goal of the model. The ‘representational’ or ‘algorithmic’
level corresponds to a computational model formulated in terms of the mathematical operations (algorithms) that
transform inputs into outputs (representations). Finally, the ‘physical’ or ‘implementational’ level corresponds to the
biological implementation of a computational model in the brain (or an artificial device). Again, there is no reason to
arbitrate between models across levels of description. In addition, the comparison of models has different meanings at
the ‘computational’, ‘algorithmic’, and ‘physical’ levels. At the ‘computational’ level, model comparison informs about
the actual task that subjects realize, whereas at the ‘algorithmic’ level model comparison informs about the way subjects
perform this task [30]. Because simulating a model requires an algorithm to be specified, it is essential to clearly mention
whether the model reflects a hypothesis at the computational or algorithmic level.

However, contemporary epistemology recognizes that parsimony is not the heuristic required
for selecting theories. Proposing a new theory requires researchers to report experimental data
that contradict (or ‘falsify’) an existing theory, whereas the new theory is able to account for
these data (along with previous ones) [13,14]. Falsifying a cognitive model relies on showing
that it is unable to account for a specific behavioral (or neural) effect of interest. We propose to
define the inability to account for a specific effect of interest as an absolute rejection criterion
during model selection [15]. The ability of a cognitive model to reproduce (or not) the effect of
interest — which we refer to as its generative performance — needs to be assessed by
simulating the model and comparing the simulated data to the observed data. Various
statistical approaches — both frequentist (e.g., t-tests, analyses of variance) and Bayesian —
can then be used to test whether the simulated and observed effects are different, in which
case the simulated model can be rejected outright irrespective of its comparison to other
models.

Relative comparison criteria are inappropriate for falsifying models because (i) they focus on
relative evidence in favor of the winning model and against rival models, and (i) they are blind to
the ability of candidate models to produce any specific effect of interest found in the data.

To illustrate the complementary roles of model comparison (based on model fitting) and model
falsification (based on model simulations), we sketch two recent examples taken from the
learning and decision-making literature [16,17].

In the first study, the authors studied the origin of human choice variability in a canonical
decision-making task involving the categorization of sequences of visual stimuli of variable
lengths (Figure 2A) [16]. They compared a standard model in which variability arose from a noisy
response selection process to a new model in which variability arose from errors in the inference
process. In this example, the two models had the same complexity — in other words one
variability parameter located either at the inference or response selection stages. The authors
first assessed the predictive performance of the two models, which provided substantial
evidence in favor of the ‘noisy inference’ model. Then, to determine why the ‘noisy inference’
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Glossary

Generative performance: the ability
of a given model to generate the
data. The generative performance is
evaluated by comparing model
simulations to the actual data. For
this comparison both frequentist and
Bayesian statistics can be used.
Model falsification: showing
through model simulations that a
given model is not able to generate a
specific behavioral effect of interest.
The simulated data should be
generated using the best-fitting
parameter values. Ideally, this ‘model
falsification’” step should include two
related results: () the behavioral
phenomenon is not detectable in the
simulated data, and (ji) a significant
difference between observed and
simulated data should be detected.
Statistical tests used in model
falsification could belong to both
Bayesian and frequentist statistical
traditions.

Model generalizability: evaluating
the ability of the best-fitting model
and the best-fitting parameters to
predict the data out-of-sample.
Model parsimony: the opposite of
model complexity, which is classically
indexed by the number of free/
adjustable parameters of a given
model.

Model recovery: a procedure
consisting of generating synthetic
data from a known candidate model
and subsequently verifying the ability
of a relative model comparison
criterion to correctly identify the
model used to generate the synthetic
data.

Predictive performance: the ability
of a given model to predict the data.
Typically the predictive performance
is instantiated by the likelihood of
observing the experimental data
given the model. The predictive
performance of models is used to
calculate various approximations of
the model evidence (e.g., BIC, AIC,
and others).
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