Accepted Manuscript

Decamethonium bromide-dispersed palladium nanoparticles on mesoporous HZSM-5 zeolites for deep hydrodesulfurization

Jundong Xu, Yunfeng Guo, Tingting Huang, Yu Fan

PII: S1385-8947(17)31647-9

DOI: https://doi.org/10.1016/j.cej.2017.09.148

Reference: CEJ 17733

To appear in: Chemical Engineering Journal

Received Date: 22 July 2017

Revised Date: 23 September 2017 Accepted Date: 23 September 2017

Please cite this article as: J. Xu, Y. Guo, T. Huang, Y. Fan, Decamethonium bromide-dispersed palladium nanoparticles on mesoporous HZSM-5 zeolites for deep hydrodesulfurization, *Chemical Engineering Journal* (2017), doi: https://doi.org/10.1016/j.cej.2017.09.148

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

ACCEPTED MANUSCRIPT

Decamethonium bromide-dispersed palladium nanoparticles on mesoporous HZSM-5 zeolites for deep hydrodesulfurization

Jundong Xu, Yunfeng Guo, Tingting Huang, Yu Fan*

State Key Laboratory of Heavy Oil Processing, China University of Petroleum,

Beijing 102249, P.R. China

Abstract

This article proposes a novel decamethonium bromide-assisted method for modulating the size of supported metal nanoparticles in Pd/mesoporous HZSM-5 hydrodesulfurization (HDS) catalysts. The proposed approach significantly promotes the dispersion of supported palladium nanoparticles by bridging and anchoring the palladium precursor onto the surface of mesoporous HZSM-5 as well as restraining the subsequent aggregation of palladium nanoparticles in calcination. The as-prepared catalyst possessed higher 4,6-dimethyldibenzothiophene HDS activity than its counterpart that was prepared via impregnation due to its smaller Pd nanoparticles, higher Pd dispersion and higher content of Pd⁰ species. This strategy provides a simple pathway for preparing supported metal nanoparticles with high dispersion.

Keywords: Pd nanoparticles; Mesoporous HZSM-5; High dispersion; Hydrodesulfurization; Decamethonium bromide.

E-mail address: fanyu@cup.edu.cn (Y. Fan)

-

^{*} Corresponding author. Tel.: +86 (0)10 89734981; fax: +86 (0)10 89734979.

Download English Version:

https://daneshyari.com/en/article/4762708

Download Persian Version:

https://daneshyari.com/article/4762708

<u>Daneshyari.com</u>