Accepted Manuscript

Cyclic adsorption of water vapour on CuBTC MOF: Sustaining the hydrothermal stability under non-equilibrium conditions

Nadeen Al-Janabi, Vladimir Martis, NektariaServi, Flor R. Siperstein, Xiaolei Fan

PII: S1385-8947(17)31704-7

DOI: https://doi.org/10.1016/j.cej.2017.09.197

Reference: CEJ 17782

To appear in: Chemical Engineering Journal

Received Date: 7 August 2017 Revised Date: 29 September 2017 Accepted Date: 30 September 2017

Please cite this article as: N. Al-Janabi, V. Martis, NektariaServi, F.R. Siperstein, X. Fan, Cyclic adsorption of water vapour on CuBTC MOF: Sustaining the hydrothermal stability under non-equilibrium conditions, *Chemical Engineering Journal* (2017), doi: https://doi.org/10.1016/j.cej.2017.09.197

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

CCEPTED MANUSCRIPT

Cyclic adsorption of water vapour on CuBTC MOF: Sustaining the hydrothermal

stability under non-equilibrium conditions

Nadeen Al-Janabi^a, Vladimir Martis^b, NektariaServi^b, Flor R. Siperstein^a, Xiaolei Fan^a,

^aSchool of Chemical Engineering and Analytical Science, The University of Manchester, Oxford Road,

Manchester, M13 9PL, United Kingdom

^bSurface Measurement Systems Ltd, Unit 5, Wharfside, Rosemont Road, London. HA0 4PE, United Kingdom

Abstract

Metal organic frameworks (MOFs) based adsorption processes for gas separation from humid

streams are limited by the hydrothermal stability of MOFs. This work presents a

comprehensive study of the hydrothermal stability of CuBTC MOF when exposed to humid

streams in cyclic operations. We show that water uptake is slow, and that adsorption

processes will most likely operate under non-equilibrium conditions. CuBTC MOF does not

show signs of decomposition when exposed to low water concentration and room temperature

(up to water partial pressures of 6 mbar and 25 °C) for up to 48 h of cyclic operation.

Nevertheless, short cycles (of less than 15 min per pressure stage) are required when exposed

to high water vapour content (up to 70 mbar, 50 °C). This work demonstrates the need of

tailoring the length of water exposure to avoid the equilibrium adsorption of water vapour on

CuBTC and maintain the adsorbent integrity.

Keywords

Metal-organic frameworks (MOFs); CuBTC; Water vapour adsorption; Non-equilibrium adsorption;

Hydrothermal stability; Cyclic adsorption.

*Corresponding author. Tel.: +44 1613062690; Email: xiaolei.fan@manchester.ac.uk (X. FAN)

1

Download English Version:

https://daneshyari.com/en/article/4762749

Download Persian Version:

https://daneshyari.com/article/4762749

<u>Daneshyari.com</u>