Contents lists available at ScienceDirect

Chemical Engineering Journal

journal homepage: www.elsevier.com/locate/cej

Optimization of the design, operating conditions, and coupling configuration of combined cycle power plants and CO_2 capture processes by minimizing the mitigation cost

Patricia L. Mores^{a,1}, Juan I. Manassaldi^{a,1}, Nicolás J. Scenna^a, José A. Caballero^b, Miguel C. Mussati^{a,c}, Sergio F. Mussati^{a,c,*}

^a CAIMI Centro de Aplicaciones Informáticas y Modelado en Ingeniería, Universidad Tecnológica, Nacional, Facultad Regional Rosario, Zeballos 1346, S2000BQA Rosario, Argentina

^b Department of Chemical Engineering, University of Alicante, Apartado de correos 99, 03080 Alicante, Spain

^c INGAR Instituto de Desarrollo y Diseño (CONICET-UTN), Avellaneda 3657, S3002GJC Santa Fe, Argentina

ARTICLE INFO

Keywords: Natural gas combined cycle NGCC Post-combustion CO₂ capture Mitigation cost Optimal coupling schemes NLP model GAMS

ABSTRACT

This paper deals with the optimization of the coupling between a natural gas combined cycle (NGCC) plant and a post-combustion CO_2 capture process by minimizing the mitigation cost – defined as the ratio between the cost of electric power generation and the amount of CO_2 emitted per unit of total net electric power generated – while satisfying the design specifications: electric power generation capacity and CO_2 capture level. Three candidate coupling configurations, which differ in the place where the steam is extracted from, are optimized using detailed and rigorous models for both the NGCC and the CO_2 capture plants. By comparing the mitigation cost of each configuration, the optimal integration configuration and the corresponding optimal sizes and operating conditions of all process units (steam turbines, gas turbines, heat recovery steam generators HRSGs, absorption and regeneration columns, reboilers and condensers, and pumps) are provided. In the computed optimal solution, the steam required by the CO_2 capture plant is extracted from both the steam turbine and the HRSG (evaporator operating at low pressure), and the mitigation cost is 90.88 \$/t CO_2. The optimal solution is compared in detail regarding capital investment and operating costs, HRSG configuration, process unit sizes, and operating conditions.

1. Introduction

The combustion of fossil fuels for electricity generation, industry, and transportation is the largest source of CO_2 emissions, and it is considered to be the main contributor to the greenhouse effect. The reduction of CO_2 emissions is one of the most challenging issues that the world community faces today, which requires joint actions and close cooperation between government, industries, and researchers.

The most important strategies to reduce the global CO_2 emissions are the CO_2 capture and storage (CCS) and the CO_2 capture and utilization (CCU), which differ in the final destination of the captured CO_2 . In the former the captured CO_2 is transferred to a suitable site for longterm storage whereas in the latter the captured CO_2 is converted into valuable fuels, chemicals, building materials, and other products. Cuéllar-Franca and Azapagic [1] and Kravanja et al. [2] presented an overview of recent advances in CCS and CCU, among other environmental issues.

There are studies in which the CO_2 is utilized as a carbon source for methanol production [3–6]. Roh et al. [6] developed a methodology for a sustainable design and implementation strategy of CO_2 utilization processes. They considered two CO_2 utilization processes for methanol production: combined reforming and direct synthesis. They showed that the integration or replacement of an existing conventional methanol plant with a combined reforming process represents a sustainable solution. Furthermore, there are studies in which the CO_2 is utilized for the production of dimethyl carbonate [7], dimethyl ether [8], urea [9], and for enhanced oil recovery (EOR) [10]. Kongpanna et al. [7] applied a systematic computer-aided framework for the synthesis and generation of processing networks for dimethyl carbonate production with CO_2 utilization. Martin [8] proposed a mathematical

* Corresponding author at: INGAR Instituto de Desarrollo y Diseño (CONICET-UTN), Avellaneda 3657, S3002GJC Santa Fe, Argentina.

http://dx.doi.org/10.1016/j.cej.2017.08.111 Received 6 June 2017; Received in revised form 21 August 2017; Accepted 22 August 2017 Available online 24 August 2017 1385-8947/ © 2017 Elsevier B.V. All rights reserved.

E-mail address: mussati@santafe-conicet.gov.ar (S.F. Mussati).

¹ Contributed equally to this article.

Nomenclature

Symbols	
Synwow	

AC	total additional cost (M\$/yr.)
CAPEX	capital expenditures (M\$)
COE	cost of electric power generation (\$/MWh)
CRF	capital recovery factor (dimensionless)
Cinv	total investment cost (M\$)
C _{inv} ^k	individual acquisition cost of the pieces of equipment (k)
	of the power plant and the capture system (M\$)
Cmant	cost of maintenance (M\$/yr.)
C _{mp}	cost of manpower (M\$/yr.)
C _{rm}	cost of raw materials and utilities (M\$/yr.)
C_{rm}^{u}	specific cost of raw materials and utilities (\$/t, \$/GW)
Cs	supervision and support labor (M\$/yr.)
DMC	total direct manufacturing cost (M\$)
Е	amount of CO_2 emitted per unit of total net electric power
	generated (kg/MWh)
f_1, f_2, f_3	economic indexes (dimensionless)
g _t	set of inequality constraints t
HETP	height equivalent to a theoretical plate (m)
HTA	heat transfer area (dam ²)
HTU	height of a transfer unit (dimensionless)
hs	set of equality constraints s
i	interest rate (%)
IFC	investment on fix capital (M\$)
IMC	total indirect manufacturing cost (M\$)
LMTD	logarithm mean temperature difference (K)
MC	minimal mitigation cost ($1/t CO_2$)
m ^u	annual consumption of raw materials and utilities (kg/yr.)
MW _{CO2}	molecular weight of CO_2 (g/mol)
MW^{34}	molecular weight of gaseous mixture in the stream #34
	(g/mol)
OPEX	operating expenditures (M\$/yr.)
PC	total production cost (M\$/yr.)
R _{CO2}	CO ₂ recovery (%)
TAC	total annual cost (M\$/yr.)
W_{GT}	net electric power generated by the gas turbines (MW)
W _{net}	required total net electric power generation (MW)
W _{ST}	net electric power generated by the steam turbines (MW)
W_B^{CP}	total electric power required by blowers B in the CO_2
	capture plant CP (MW)
W_{C}^{PP}	total electric power consumed by compressors C in the
CD	NGCC power plant PP (MW)
W_{C}^{CP}	total electric power required by compressors C in the CO_2
	capture plant CP (MW)
W_P^{PP}	total electric power consumed by pumps P in the NGCC
	power plant PP (MW)
W_P^{CP}	total electric power required by pumps P in the CO ₂ cap-
	ture plant CP (MW)
W _{net}	generated total net electric power (MW)
NTU	number of transfer units (dimensionless)
N _{CT}	number of CO ₂ capture trains (dimensionless)
N_{GT}	number of gas turbines (dimensionless)
N_P	number of pumps (dimensionless)
N _{ST}	number of steam turbines (dimensionless)
n	project lifespan (yr.)

Chemical Engineering Journal 331 (2018) 870-894

 $X^k \\$ size of the process unit k (dam², MW, m³)

Acronyms

CCS	CO_2 capture and storage
GAMS	General Algebraic Modeling System
HETP	height equivalent to a theoretical plate
HRSG	heat recovery steam generators
HTA	heat transfer area
HTU	height of a transfer unit
IGCCs	integrated gasification combined cycles
LMTD	logarithm mean temperature difference
MINLP	mixed-integer nonlinear programming
NGCC	natural gas combined cycle
NLP	nonlinear programming
NTU	number of transfer units
SNG	synthetic natural gas

Abbreviations

AE, IC, C	T heat exchangers	
AMP	amino-methyl-propanol	
В	blower	
BZA	benzylamine	
С	condenser	
CC	combustion chamber	
COM	compressors	
C1, C2, C3 coupling scheme		
EC	economizer	
EC	lean/rich solutions cross heat exchanger	
EV	evaporator	
EX	expander	
GEN1, GE	EN2 generator	
GT	gas turbine	
gPROMS	general PROcess Modelling System	
HMPD	4-hydroxy-1-methylpiperidine	
HPST	high pressure steam turbine	
IPST	intermediate pressure steam turbine	
LPST	low pressure steam turbine	
MEA	monoethanolamine	
OS	optimal solution	
P, CO_2P	pumps	
P1	optimization problem	
PZ	piperazine	
R	reboiler	
REG	regeneration column	
SH	superheater	
SOS1, SO	S2 suboptimal solution	
Subscript		
PP + CP	NGCC power plant coupled to the CO ₂ capture plan	
SAPP	NGCC power plant operating in a standalone mode	
Greek letters		

CO₂ loading in the liquid phase (mol/mol) α_{CO2} working hours per year (8000 h/yr.) τ

optimization framework to select the flow sheet and determine the operating conditions for the synthesis of dimethyl ether from CO₂ captured and H₂ produced by water electrolysis using renewable energy sources such as solar or wind energy. Hasan et al. [10] developed a multi-scale framework for CO_2 capture, utilization, and storage (CCUS) to minimize costs while reducing the stationary CO₂ emission in USA. The studies have shown that more than 3% of the total stationary CO_2 emission in USA can be eliminated by a CCUS network. Bose et al. [9] investigated the possibility of recycling the CO₂ captured at coalbased power plants rather than its capture and storage which would

plant

Download English Version:

https://daneshyari.com/en/article/4762827

Download Persian Version:

https://daneshyari.com/article/4762827

Daneshyari.com