Accepted Manuscript

Gliding arc plasma for CO_2 conversion: better insights by a combined experimental and modelling approach

Weizong Wang, Danhua Mei, Xin Tu, Annemie Bogaerts

PII:	S1385-8947(17)31280-9
DOI:	http://dx.doi.org/10.1016/j.cej.2017.07.133
Reference:	CEJ 17399
To appear in:	Chemical Engineering Journal
Received Date:	3 April 2017
Revised Date:	17 June 2017
Accepted Date:	21 July 2017

Please cite this article as: W. Wang, D. Mei, X. Tu, A. Bogaerts, Gliding arc plasma for CO₂ conversion: better insights by a combined experimental and modelling approach, *Chemical Engineering Journal* (2017), doi: http://dx.doi.org/10.1016/j.cej.2017.07.133

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

Gliding arc plasma for CO₂ conversion: better insights by a combined experimental and modelling approach

Weizong Wang*.¹, Danhua Mei², Xin Tu² and Annemie Bogaerts¹

1. Research group PLASMANT, Department of Chemistry, University of Antwerp, Universiteitsplein

1, B-2610 Wilrijk-Antwerp, Belgium

2. Department of Electrical Engineering and Electronics, University of Liverpool, Brownlow Hill, Liverpool L69 3GJ, United Kingdom

E-mail: wangweizong@gmail.com, Xin.Tu@liverpool.ac.uk, annemie.bogaerts@uantwerpen.be

Highlights

- 4 A two dimensional self-consistent model is developed and validated by the direct experiment.
- Gliding arc shows a strong non-equilibrium character of the conversion process, explaining the higher values of conversion and energy efficiency than thermal process.
- A chemical kinetics analysis shows that the CO₂ vibrational levels significantly contribute to the CO₂ dissociation.
- Promoting the vibrational kinetics, reducing the recombination of CO with O₂ and increasing the CO₂ fraction treated by the arc can further improve the conversion and energy efficiency.

Abstract

A gliding arc plasma is a potential way to convert CO_2 into CO and O_2 , due to its non-equilibrium character, but little is known about the underlying mechanisms. In this paper, a self-consistent twodimensional (2D) gliding arc model is developed, with a detailed non-equilibrium CO_2 plasma chemistry, and validated with experiments. Our calculated values of the electron number density in the plasma, the CO_2 conversion and energy efficiency show reasonable agreement with the experiments, indicating that the model can provide a realistic picture of the plasma chemistry. Comparison of the results with classical thermal conversion, as well as other plasma-based technologies for CO_2 conversion reported in literature, demonstrates the non-equilibrium character of the gliding arc, and indicates that the gliding arc is a promising plasma reactor for CO_2 conversion. However, some process modifications should be exploited to further improve its performance. As the model provides a realistic picture of the plasma behaviour, we use it first to investigate the plasma characteristics in a whole gliding arc cycle, which is necessary to understand the underlying mechanisms. Subsequently, we perform a chemical kinetics analysis, to investigate the different pathways for CO_2 loss and formation. Based on the revealed discharge properties and the underlying CO_2 plasma chemistry, the model allows us to propose solutions on how to further improve the CO_2 conversion and energy efficiency by a gliding arc plasma.

Keywords: CO₂ conversion, gliding arc, non-equilibrium plasma, plasma chemistry, splitting mechanisms, breakdown

Submitted to Chemical Engineering Journal

Download English Version:

https://daneshyari.com/en/article/4762868

Download Persian Version:

https://daneshyari.com/article/4762868

Daneshyari.com