Accepted Manuscript Strengthening the reactivity of Fe⁰/(Fe/Cu) by premagnetization: implications for nitrate reduction rate and selectivity Yi Ren, Jinghui Yang, Jun Li, Bo Lai PII: S1385-8947(17)31369-4 DOI: http://dx.doi.org/10.1016/j.cej.2017.08.029 Reference: CEJ 17480 To appear in: Chemical Engineering Journal Received Date: 3 April 2017 Revised Date: 5 August 2017 Accepted Date: 7 August 2017 Please cite this article as: Y. Ren, J. Yang, J. Li, B. Lai, Strengthening the reactivity of Fe⁰/(Fe/Cu) by premagnetization: implications for nitrate reduction rate and selectivity, *Chemical Engineering Journal* (2017), doi: http://dx.doi.org/10.1016/j.cej.2017.08.029 This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain. ## **ACCEPTED MANUSCRIPT** Strengthening the reactivity of ${\rm Fe^0/(Fe/Cu)}$ by premagnetization: implications for nitrate reduction rate and selectivity Yi Ren¹, Jinghui Yang², Jun Li¹, Bo Lai^{1*} 1 Department of Environmental Science and Engineering, School of Architecture and Environment, Sichuan University, Chengdu 610065, China 2 China National Petroleum Corporation, Research Institute of Safety and Environment Technology, HSE Assessment Center, Beijing 100012, China **Abstract:** In order to develop a better Fe⁰ based system, premagnetization was used to enhance the reactivity of Fe⁰ particles and Fe/Cu bimetallic particles micro-electrolysis (Fe⁰/(Fe/Cu)) system for nitrate wastewater treatment. In this study, the significant parameters (i.e., initial pH, premagnetization time and intensity of magnetic field) were optimized firstly. Under the optimal conditions, the premagnetization Fe⁰/(Fe/Cu) system could obtain a high rate (k_{obs} =0.732 min⁻¹) and better selectivity ([TN removal]/[NO₃-N removal] ratio=54.3%) for nitrate reduction, which were much superior to the 7 control experiments (i.e., Fe⁰/(Fe/Cu) system, premagnetization Fe⁰ particles and Cu⁰ particles micro-electrolysis (premagnetization Fe⁰/Cu⁰) system, Fe⁰/Cu⁰ system, premagnetization Fe⁰ system, Fe⁰ system, premagnetization Fe/Cu system and Fe/Cu system). Meanwhile, it was confirmed that the prepared Fe⁰/(Fe/Cu) could keep the high reactivity even after vacuum drying and longtime storage. Furthermore, the operational life of premagnetization Fe⁰/(Fe/Cu) system is better than that of Fe⁰/(Fe/Cu) system (for more than 12.6 L wastewater * Corresponding authors. Tel./fax: +86 18682752302 E-mail address: laibo@scu.edu.cn (Bo Lai) _ ## Download English Version: ## https://daneshyari.com/en/article/4762918 Download Persian Version: https://daneshyari.com/article/4762918 <u>Daneshyari.com</u>