Accepted Manuscript

UV/H₂O₂: An efficient aqueous advanced oxidation process for VOCs removal

Gaoyuan Liu, Jian Ji, Haibao Huang, Ruijie Xie, Qiuyu Feng, Yajie Shu, Yujie Zhan, Ruimei Fang, Miao He, Shuilian Liu, Xinguo Ye, Dennis Y.C. Leung

PII: S1385-8947(17)30648-4

DOI: http://dx.doi.org/10.1016/j.cej.2017.04.105

Reference: CEJ 16859

To appear in: Chemical Engineering Journal

Received Date: 7 February 2017 Revised Date: 21 April 2017 Accepted Date: 22 April 2017

Please cite this article as: G. Liu, J. Ji, H. Huang, R. Xie, Q. Feng, Y. Shu, Y. Zhan, R. Fang, M. He, S. Liu, X. Ye, D.Y.C. Leung, UV/H₂O₂: An efficient aqueous advanced oxidation process for VOCs removal, *Chemical Engineering Journal* (2017), doi: http://dx.doi.org/10.1016/j.cej.2017.04.105

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

ACCEPTED MANUSCRIPT

UV/H₂O₂: An efficient aqueous advanced oxidation process for VOCs removal

Gaoyuan Liu¹, Jian Ji¹, Haibao Huang^{1,*}, Ruijie Xie¹, Qiuyu Feng¹, Yajie Shu¹,

Yujie Zhan¹, Ruimei Fang¹, Miao He¹, Shuilian Liu¹, Xinguo Ye¹, Dennis Y.C. Leung²

¹ School of Environmental Science and Engineering, Sun Yat-Sen University, Guangzhou

510275, PR China

² Department of Mechanical Engineering, University of Hong Kong, Hong Kong

Abstract: Catalyst deactivation and secondary pollution are the critical issues challenging the traditional heterogeneous catalysis (gas-solid) methods for VOCs removal at room temperature. This process strongly depends on the available ·OH radicals. Because of the facile formation of ·OH radicals, H₂O₂-based advanced oxidation processes (AOPs) may facilitate VOCs removal. In this paper, UV/H₂O₂, for the first time, was employed to degrade continuous-flow gaseous toluene in batch system with comparison to UV/Fenton and Fenton process. UV/H₂O₂ process was identified to moderately generate ·OH radicals and yielded removal efficiency higher than 80% without any loss while it gradually declined to 32% and 45% within 120 min in the Fenton and UV/Fenton process, respectively. No emission of gaseous intermediates was identified at the outlet in all the AOPs. Most of the removed toluene was oxidized into CO₂ in the UV/H₂O₂ process, however, many organic intermediates were generated in the solution of Fenton and UV/Fenton process. The superior performance of UV/H₂O₂ process was mainly ascribed to the continuous

1

^{*}Corresponding author. Tel & Fax: +86-20-39336475, Email address: seabao8@gmail.com

Download English Version:

https://daneshyari.com/en/article/4762965

Download Persian Version:

https://daneshyari.com/article/4762965

<u>Daneshyari.com</u>