Accepted Manuscript

Heterogeneous catalytic oxidation for the degradation of p-nitrophenol in aqueous solution by persulfate activated with $CuFe_2O_4$ magnetic nano-particles

Jun Li, Yi Ren, Fangzhou Ji, Bo Lai

PII: S1385-8947(17)30649-6

DOI: http://dx.doi.org/10.1016/j.cej.2017.04.104

Reference: CEJ 16858

To appear in: Chemical Engineering Journal

Received Date: 8 January 2017 Revised Date: 3 March 2017 Accepted Date: 22 April 2017

Please cite this article as: J. Li, Y. Ren, F. Ji, B. Lai, Heterogeneous catalytic oxidation for the degradation of *p*-nitrophenol in aqueous solution by persulfate activated with CuFe₂O₄ magnetic nano-particles, *Chemical Engineering Journal* (2017), doi: http://dx.doi.org/10.1016/j.cej.2017.04.104

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

ACCEPTED MANUSCRIPT

Heterogeneous catalytic oxidation for the degradation of p-nitrophenol in aqueous solution by persulfate activated with $CuFe_2O_4$ magnetic nano-particles

Jun Li, Yi Ren, Fangzhou Ji, Bo Lai*

Department of Environmental Science and Engineering, School of Architecture and Environment, Sichuan University, Chengdu 610065, China

Abstract: To evaluate the heterogeneous degradation of p-nitrophenol (PNP) in aqueous solution by catalytic oxidation process involving persulfate (PS) activated by CuFe₂O₄ magnetic nano-particles, the CuFe₂O₄/PS system was investigated in this study. CuFe₂O₄ magnetic nano-particles were synthesized with a sol-gel combustion method and then used as heterogeneous catalysts for PS activation. First, effects of CuFe₂O₄ dosage (0-40 g/L), PS dosage (0-10 mM), initial pH value (3.0-11.0) and co-existing inorganic ions on the degradation of PNP in aqueous solution by CuFe₂O₄/PS system were investigated comprehensively. In particular, the maximum PNP removal (89%) and total organic carbon (TOC) removal (81%) were obtained under the optimal conditions. Meanwhile, two control experiments (i.e., CuFe₂O₄ alone and PS alone systems) were carried out to confirm the performance in CuFe₂O₄/PS system. Furthermore, the reasonable PNP degradation pathway was proposed based on the intermediates detected by high performance liquid chromatography (HPLC). Finally, the mechanism of the CuFe₂O₄/PS system was

E-mail address: laibo@scu.edu.cn (Bo Lai)

-

^{*} Corresponding authors. Tel./fax: +86 18682752302

Download English Version:

https://daneshyari.com/en/article/4762966

Download Persian Version:

https://daneshyari.com/article/4762966

<u>Daneshyari.com</u>