Accepted Manuscript

A genuine in-situ water removal at a molecular lever by an enhanced esterification-pervaporation coupling in a catalytically active membrane reactor

Weihua Qing, Jiaqian Wu, Ning Chen, Lele Liu, Yajun Deng, Weidong Zhang

PII: S1385-8947(17)30552-1

DOI: http://dx.doi.org/10.1016/j.cej.2017.04.020

Reference: CEJ 16768

To appear in: Chemical Engineering Journal

Received Date: 7 November 2016 Revised Date: 29 March 2017 Accepted Date: 5 April 2017

Please cite this article as: W. Qing, J. Wu, N. Chen, L. Liu, Y. Deng, W. Zhang, A genuine in-situ water removal at a molecular lever by an enhanced esterification-pervaporation coupling in a catalytically active membrane reactor, *Chemical Engineering Journal* (2017), doi: http://dx.doi.org/10.1016/j.cej.2017.04.020

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

ACCEPTED MANUSCRIPT

A genuine in-situ water removal at a molecular lever by an enhanced esterificationpervaporation coupling in a catalytically active membrane reactor

Weihua Qing ^a, Jiaqian Wu ^a, Ning Chen ^b, Lele Liu ^a, Yajun Deng ^a, Weidong Zhang ^{a,*}
a.State Key Laboratory of Chemical Resource Engineering,

Beijing Key Laboratory of Membrane Science and Technology, Beijing University of Chemical Technology, Beijing 100029, People's Republic of China

b.China Tianchen Engineering Corporation, 1 Jingjin Road, Tianjin 300400, People's Republic of China (*Corresponding Author at: PO Box 1#, Beijing University of Chemical Technology, Beijing 100029, People's Republic of China. Tel.: +86-10-6444-8475; Email address: zhangwd@mail.buct.edu.cn)

Abstract: A better conversion enhancement of esterification between acetic acid and nbutanol was achieved in a catalytically active membrane reactor (pCAMR) when compared to that in a traditional inert membrane reactor (IMR). This enhancement was attributed to a novel composite catalytically active membrane in which a highly porous catalytic layer was introduced. SEM images showed that the membrane consisted of three layers: the top layer was a highly porous catalytic layer with massive macrovoids and "sponge-like" pores, the middle layer was a dense polyvinyl alcohol selective layer, and the bottom layer was a porous polyethersulfone support layer. The preparation of a highly porous catalytic layer instead of a dense one in the composite membrane greatly decreased the overall mass transfer resistance of the reactor from 6.7×10⁵ to 5.6×10⁵ sec/m, a value which is even comparable to that of IMR $(5.1\times10^5 \text{ sec/m})$ where the additional catalytic layer was absent. The effects of operational parameters on the esterification-pervaporation coupling performance in pCAMR were systematically evaluated. Through a reasonable match between reaction rate and water removal rate, a genuine in-situ water removal at a molecular lever was realized. For comparison, coupling performances in an IMR and a catalytically active membrane reactor with a dense composite membrane (dCAMR) were also investigated. Results showed that the coupling performance in pCAMR outperformed both IMR and dCAMR due to a combination of much lower overall mass transfer resistance and higher mass transfer driving force for water removal in pCAMR. After 45 hours at 85 °C, the acid conversion in pCAMR reached almost completion, an approximately 43 % of conversion enhancement was achieved when compared to equilibrium conversion.

Download English Version:

https://daneshyari.com/en/article/4763075

Download Persian Version:

https://daneshyari.com/article/4763075

Daneshyari.com