Accepted Manuscript

Removal of hydrogen sulfide in air using cellular concrete waste: biotic and abiotic filtrations

Mouna Ben Jaber, Annabelle Couvert, Abdeltif Amrane, Pierre Le Cloirec, Eric Dumont

PII: DOI: Reference:	S1385-8947(17)30354-6 http://dx.doi.org/10.1016/j.cej.2017.03.014 CEJ 16610
To appear in:	Chemical Engineering Journal
Received Date:	16 January 2017
Revised Date:	3 March 2017
Accepted Date:	6 March 2017

Please cite this article as: M. Ben Jaber, A. Couvert, A. Amrane, P.L. Cloirec, E. Dumont, Removal of hydrogen sulfide in air using cellular concrete waste: biotic and abiotic filtrations, *Chemical Engineering Journal* (2017), doi: http://dx.doi.org/10.1016/j.cej.2017.03.014

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

ACCEPTED MANUSCRIPT

Removal of hydrogen sulfide in air using cellular

concrete waste: biotic and abiotic filtrations

Mouna BEN JABER¹, Annabelle COUVERT¹, Abdeltif AMRANE¹, Pierre LE CLOIREC¹, Eric DUMONT^{2(*)}

1 Ecole Nationale Supérieure de Chimie de Rennes, CNRS, UMR 6226, 11 Allée de Beaulieu, CS 50837, 35708 Rennes Cedex 7, France

2 UMR CNRS 6144 GEPEA, L'UNAM, École des Mines de Nantes, La Chantrerie, 4 rue Alfred Kastler, B.P.
20722, 44307 Nantes Cedex 3, France

NAT

*: Corresponding author

Abstract

The objective of this study was to investigate the removal of hydrogen sulfide (H₂S) present in air using cellular concrete waste as the packing material. Air filtration was performed under biotic and abiotic conditions. Experiments were carried out in a laboratory-scale PVC column (internal diameter of 300 mm) filled with a volume of 70 L of cellular concrete (1 m height). The polluted air flow was generated at 4 m³ h⁻¹ corresponding to an Empty Bed Residence Time (EBRT) of 63 s. In dry conditions without biomass (abiotic conditions), cellular concrete can be an effective medium for the treatment of H₂S in air. For an H₂S concentration of 100 ppmv, the removal efficiency was around 70 % (Elimination Capacity (EC) of 5.6 g m⁻ ³ h⁻¹). This finding can be explained by the physicochemical reactions that can take place between H₂S and the cellular concrete components (mainly CaO, CaCO₃ and Fe₂O₃). However, interactions between cellular concrete and H₂S are not yet fully understood. Used as a packing material for H₂S biofiltration (biotic conditions), cellular concrete waste efficiently Download English Version:

https://daneshyari.com/en/article/4763114

Download Persian Version:

https://daneshyari.com/article/4763114

Daneshyari.com