Accepted Manuscript

Characterization and Catalytic Properties of Molybdenum Supported on Nano Gamma Al₂O₃ for Upgrading of Anisole Model Compound

Majid Saidi, Behnam Rahzani, Mohammad Reza Rahimpour

PII: DOI: Reference:	S1385-8947(17)30332-7 http://dx.doi.org/10.1016/j.cej.2017.02.149 CEJ 16588
To appear in:	Chemical Engineering Journal
Received Date:	18 October 2016
Revised Date:	23 February 2017
Accepted Date:	27 February 2017

Please cite this article as: M. Saidi, B. Rahzani, M.R. Rahimpour, Characterization and Catalytic Properties of Molybdenum Supported on Nano Gamma Al₂O₃ for Upgrading of Anisole Model Compound, *Chemical Engineering Journal* (2017), doi: http://dx.doi.org/10.1016/j.cej.2017.02.149

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

ACCEPTED MANUSCRIPT

Characterization and Catalytic Properties of Molybdenum Supported on Nano Gamma Al₂O₃ for Upgrading of Anisole Model Compound

Majid Saidi¹, Behnam Rahzani², Mohammad Reza Rahimpour^{2,3*}

¹ Faculty of Engineering, Shahrekord University, Shahrekord, Iran
² Department of Chemical Engineering, Shiraz University, Shiraz 71345, Iran
³ Department of Chemical Engineering, University of California, Davis, California 95616, United States

Abstract

The conversion of anisole, a prototypical compound representative of lignin–derived bio–oil, was catalyzed by molybdenum supported on nano gamma alumina catalyst in a flow reactor at 623–723 K, 8 bar pressure and space velocity of 6 (g of anisole)/g of catalyst× h). Mo supported nano gamma Al₂O₃ is synthesized by impregnation method and its physicochemical properties are characterized by XRD, FESEM, EDS and BET techniques. For investigation and evaluation of the support effect, regular gamma support is used for synthesis a catalyst at optimum loading in order to compare the performance of nano gamma Al₂O₃ represented that this type of catalyst is active to form benzene by hydrodeoxygenation (HDO) reaction, phenol by hydrogenolysis, 2–methylphenol by transalkylation, to 2,6– dimethylphenol and 2,3,5,6–tetramethylphenol by alkylation. Experimental analysis revealed that increasing the Mo loading to 20% enhances the

* Corresponding authors:

rahimpor@shirazu.ac.ir, mrahimpour@ucdavis.edu (M.R. Rahimpour). m.saidi@eng.sku.ac.ir (M. Saidi).

Download English Version:

https://daneshyari.com/en/article/4763117

Download Persian Version:

https://daneshyari.com/article/4763117

Daneshyari.com