Accepted Manuscript

A pilot-scale investigation on the recovery of zinc and phosphate from phosphating wastewater by step precipitation and crystallization

Haiming Huang, Peng Zhang, Liping Yang, Dingding Zhang, Guojun Guo, Jiahui Liu

PII: S1385-8947(17)30278-4

DOI: http://dx.doi.org/10.1016/j.cej.2017.02.112

Reference: CEJ 16551

To appear in: Chemical Engineering Journal

Received Date: 5 January 2017 Revised Date: 18 February 2017 Accepted Date: 20 February 2017

Please cite this article as: H. Huang, P. Zhang, L. Yang, D. Zhang, G. Guo, J. Liu, A pilot-scale investigation on the recovery of zinc and phosphate from phosphating wastewater by step precipitation and crystallization, *Chemical Engineering Journal* (2017), doi: http://dx.doi.org/10.1016/j.cej.2017.02.112

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

ACCEPTED MANUSCRIPT

1	A pilot-scale investigation on the recovery of zinc and phosphate from
2	phosphating wastewater by step precipitation and crystallization
3	Haiming Huang ^a *, Peng Zhang ^a , Liping Yang ^b , Dingding Zhang ^a , Guojun Guo ^a , Jiahui Liu ^a
4	^a Hebei Key Laboratory of Applied Chemistry, School of Environmental and Chemical
5	Engineering, Yanshan University, Qinhuangdao 066004, PR China
6	^b Shenzhen Academy of Environmental Sciences, Shenzhen 518001, PR China
7	Abstract: A sustainable process to recover zinc and phosphate separately from phosphating
8	wastewater was proposed, which involved a preliminary recovery of zinc by the adjustment of pH
9	followed by phosphate recovery through the formation of magnesium ammonium phosphate
10	(MAP). Lab-scale batch experiments were first performed to investigate the effects of suspended
11	solid (SS), linear alkylbenzene sulfonate (LAS), and Zn ²⁺ on the crystallization of MAP. The
12	results indicated that the presence of LAS and Zn ²⁺ , except SS, had a markedly inhibitory effect
13	on the MAP crystallization. The inhibition ratio of Zn ²⁺ on MAP crystallization markedly
14	increased with an increase in the Zn ²⁺ concentration; whereas, it progressively decreased at a pH
15	range of 8.5-9.5, reached the minimum value at pH 9.5, and then increased gradually at a pH
16	range of 9.5 to 10.5. Nevertheless, the presence of Zn ²⁺ was conducive to the removal of
17	phosphate. The results of the experiments for overdosing magnesium and ammonium salts
18	demonstrated that excessive addition of magnesium was more conducive to the enhancement of
19	phosphate recovery efficiency from phosphating wastewater compared to that of excess or
20	ammonium. The investigation on separate recovery of zinc from phosphating wastewater showed
21	that the zinc recovery efficiency reached 99% by adjusting pH to 7, accompanied by the removal
22	of a small quantity of phosphate. The pilot-scale study revealed that 99% of the Zn ²⁺ and 98% or
23	the PO ₄ -P could be recovered from phosphating wastewater by the proposed stepwise precipitation
24	process. An economic analysis revealed that the treatment cost and the benefit of the recovered
25	product by the proposed process could be basically offset.
26	Keywords: Zinc, phosphate, phosphating wastewater, precipitation.
27	
28	*Corresponding Author: Phone: +86 335 8387 741; Fax: +86 335 8061 569;
29	E-mail: huanghaiming52hu@163.com

Download English Version:

https://daneshyari.com/en/article/4763240

Download Persian Version:

https://daneshyari.com/article/4763240

<u>Daneshyari.com</u>