Accepted Manuscript

Enhanced degradation of aqueous norfloxacin and enrofloxacin by UV-activated persulfate: kinetics, pathways and deactivation

Hongguang Guo, Tingling Ke, Naiyun Gao, Yang Liu, Xin Cheng

PII: S1385-8947(17)30143-2

DOI: http://dx.doi.org/10.1016/j.cej.2017.01.123

Reference: CEJ 16425

To appear in: Chemical Engineering Journal

Received Date: 24 November 2016 Revised Date: 30 January 2017 Accepted Date: 31 January 2017

Please cite this article as: H. Guo, T. Ke, N. Gao, Y. Liu, X. Cheng, Enhanced degradation of aqueous norfloxacin and enrofloxacin by UV-activated persulfate: kinetics, pathways and deactivation, *Chemical Engineering Journal* (2017), doi: http://dx.doi.org/10.1016/j.cej.2017.01.123

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

ACCEPTED MANUSCRIPT

1	Enhanced degradation of aqueous norfloxacin and enrofloxacin by UV-activated
2	persulfate: kinetics, pathways and deactivation
3	
4	Hongguang Guo ^{1,2,*} , Tingling Ke ¹ , Naiyun Gao ³ , Yang Liu ¹ , Xin Cheng ¹
5	
6	¹ National Engineering Laboratory for Clean Technology of Leather Manufacture, Sichuan University, Chengdu
7 8	610065, China ² College of Architecture and Environment, Sichuan University, Chengdu 610065, China
9	³ State Key Laboratory of Pollution Control and Resource Reuse, Tongji University, Shanghai 200092, China
10	*Corresponding author.
11	E-mail addresses: hgguo@scu.edu.cn (H. G. Guo) Tel: 0086-28-85408889. Fax: 0086-28-85405534
12	
13	
14 15	Abstract
16	Two selected fluoroquinolones (FQs), norfloxacin (NOR) and enrofloxacin (ENR)
17	were degraded using the UV/persulfate process. The degradation of FQs was mainly
18	enhanced with the increasing dosages of persulfate (0.05mM-0.5mM) and lower FQs
19	concentration (0.0026-0.052 mM). pH 9.0 was demonstrated as the optimal condition
20	with the apparent rate constants at 0.186±0.018 min ⁻¹ and 0.250±0.029 min ⁻¹ for NOR
21	and ENR respectively. The detailed degradation mechanisms for FQs by
22	UV/persulfate were proposed. 9 (for NOR) and 12 (for ENR) intermediates were
23	identified by high performance liquid chromatography-tandem mass spectrometry
24	(HPLC-MS/MS). It is indicated that the degradation occurred mainly through
25	defluorination, hydroxyl substitution and decarboxylation on the C-F bond or
26	carboxylic acid by photon attack, and carbonyl-addition, hydroxyl substitution as well
27	as decarboxylation on the piperazine group also constituted the decontamination,
28	which was followed by the further oxidation, deamination and subsequent
29	dehydrogenation. For NOR, the ethyl of the C-N heterocyclic ring was activated,
30	while the alpha-C atom on the ethyl of the piperazine group was vulnerable for ENR.
31	It was demonstrated that the UV/persulfate process has a great effect on the
32	mineralization (up to 61.2-62.5%) and toxicity control (14.6-32.6%) for the
33	fluoroquinolone antibiotics.

Download English Version:

https://daneshyari.com/en/article/4763337

Download Persian Version:

https://daneshyari.com/article/4763337

Daneshyari.com