Accepted Manuscript

Cytarabine degradation by simulated solar assisted photocatalysis using TiO₂

A. Koltsakidou, M. Antonopoulou, E. Evgenidou, I. Konstantinou, D.A. Lambropoulou

PII: S1385-8947(17)30141-9

DOI: http://dx.doi.org/10.1016/j.cej.2017.01.132

Reference: CEJ 16434

To appear in: Chemical Engineering Journal

Received Date: 4 December 2016 Revised Date: 28 January 2017 Accepted Date: 30 January 2017

Please cite this article as: #x00391. Koltsakidou, M. Antonopoulou, E. Evgenidou, I. Konstantinou, D.A. Lambropoulou, Cytarabine degradation by simulated solar assisted photocatalysis using TiO₂, *Chemical Engineering Journal* (2017), doi: http://dx.doi.org/10.1016/j.cej.2017.01.132

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

ACCEPTED MANUSCRIPT

Cytarabine degradation by simulated solar assisted photocatalysis using TiO₂

A. Koltsakidou 1 , M. Antonopoulou 2 , E. Evgenidou 1 , I. Konstantinou 3 , D.A. Lambropoulou 1*

¹Department of Chemistry, Aristotle University of Thessaloniki, 54124, Thessaloniki, Greece

²Department of Environmental and Natural Resources Management, University of Patras, 30100, Agrinio, Greece

³Department of Chemistry, University of Ioannina, 45110, Ioannina, Greece.

*Corresponding author at: Aristotle University of Thessaloniki, 54124, Thessaloniki, Greece

E-mail address: dlambro@chem.auth.gr (D.A. Lambropoulou).

Abstract

The photochemical degradation of antineoplastic drug cytarabine (CY) by TiO₂ photocatalysis under simulated solar light (SSL) radiation, TiO₂/S₂O₈²⁻/SSL and TiO₂/H₂O₂/SSL processes was investigated in the present study. Experimental results indicated that CY was quickly degraded in all the studied treatments and degradation kinetics was dependent by all studied variables (i.e. catalyst dose, initial CY

Download English Version:

https://daneshyari.com/en/article/4763352

Download Persian Version:

https://daneshyari.com/article/4763352

<u>Daneshyari.com</u>