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HIGHLIGHTS

« Geometric models for 2D layered and isotropic 3D fibrous porous media are proposed.
« The permeability for through plane and in-plane flow in layered fibres are predicted.
« Effects of pore blockage and developing flow are successfully accounted for.

« Prediction accuracy depends on model assumptions and velocity ranges involved.

« The model equations contain no empirical coefficients and are physically adaptable.
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In this study an existing analytical pore-scale model for flow parallel and perpendicular to 1D unidirec-
tional fibres are used and adapted to propose permeability predictions for in-plane and through plane
flow in layered 2D fibre arrangements as well as flow through 3D isotropic fibrous porous media. This
is done by application of a weighted average equation in which different weights are assigned to flow
parallel and perpendicular to 1D fibre arrangements, depending on the fibre orientation and average flow
direction. Different arrays are considered, based on the degree of staggering of fibres with respect to the
average flow direction. The effect of fibre orientation on permeability is investigated for flow through lay-
Porous media ered 2D fibre arrangements. It is illustrated how the permeability at low solid volume fractions reduces
Analytical modelling through the incorporation of the effect of developing flow. The effect of blocked pores at high solid vol-
Flow ume fractions is also accounted for by introducing a percolation threshold solid volume fraction beyond
Microstructure which no more seepage takes place. A unimodal equivalent radius is furthermore introduced into the
Permeability models in order to predict the permeability of bimodal fibrous media. The proposed permeability predic-
tions are applicable over the entire range of solid volume fractions. Comparison with theoretical models
from the literature as well as available experimental and numerical data proves satisfactory. The model
characteristics that distinguish the proposed models from many other models in the literature are (i)
being physically adaptable to extend its range of applicability, whilst at the same time (ii) balancing accu-
racy and simplicity (from an analytical point of view), and (iii) containing no empirical coefficients.
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1. Introduction applications (Jaganathan et al., 2008b; Tahir and Tafreshi, 2009;

Zobel et al., 2007). As a result, the transport properties of these

Fibrous porous media find application in many industries
including the paper production and textile industry, filtration pro-
cesses, fuel cells, acoustics, compact heat exchangers and biological
systems (Soltani et al., 2014; Stylianopoulos et al., 2008). The
advantages of these materials are their mechanically strong and
stable microstructures at low solid volume fractions. These
characteristics, including the high permeability, are what makes
these materials so attractive for the wide variety of industrial
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media are important. Several modelling strategies have therefore
been proposed towards predicting the permeability of fibrous por-
ous media in view of obtaining a better understanding of the
underlying physical flow phenomena.

The first theoretical studies were based on solving the Stokes
equations together with the introduction of a conceptual model
subject to appropriate boundary conditions. The conceptual mod-
els mostly comprise of a cylindrical unit cell involving flow through
ordered arrays (including square, triangular and hexagonal) of uni-
directional cylinders (e.g. Happel, 1959; Kuwabara, 1959; Sangani
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and Acrivos, 1982). Drummond and Tahir (1984) added terms to
the permeability prediction of Sangani and Acrivos (1982) by mak-
ing use of a matching technique in the cylindrical unit cell
approach. Spielman and Goren (1968) regarded a unit cell to be
surrounded by an infinite homogeneous fibrous porous medium
and therefore solved an equation consisting of a superposition of
the Stokes equation and Darcy’s law in order to predict the perme-
ability. Another conceptual modelling approach involving Fourier
series applied to square arrays of simple, face-centered and
body-centered lattices was proposed by Hasimoto (1958). A
detailed summary of these models as well as a comprehensive col-
lection of experimental data from numerous authors (e.g. Bergelin
et al., 1950; Kirsch and Fuchs, 1967), based on various types of
fibrous porous media, are provided by Jackson and James (1986)
and more recently by Tomadakis and Robertson (2005) and
Tamayol and Bahrami (2010).

With the advancement of technology in recent years, numerical
studies on flow through fibrous porous media increased signifi-
cantly. These studies include the pioneering work of Tahir and
Tafreshi (2009) and Jaganathan et al. (2008b). Many authors have
artificially constructed fibre networks obtained by techniques such
as magnetic resonance imaging, X-ray micro-computed tomogra-
phy (e.g. Soltani et al., 2014) and digital volumetric imaging (e.g.
Jaganathan et al., 2008b). The flow is simulated through such net-
works by solving the Stokes equations in combination with numer-
ical methods such as the finite element method (Stylianopoulos
et al., 2008), the Lattice Boltzman method (e.g. Nabovati et al,,
2009), the spectral boundary element method (e.g. Higdon and
Ford, 1996) and boundary element method (Chen and
Papathanasiou, 2006; Papathanasiou, 2001).

Although experimental studies are, in general, time-consuming
and expensive to perform (Soltani et al., 2014), the data provided
are extremely useful for the validation of numerical and analyti-
cal models. Van Doormal and Pharoah (2009), on the other hand,
stresses the important role that permeability predictions,
obtained from analytical models, play in computational fluid
dynamics models. In recent years several authors have combined
numerical and analytical or empirical modelling procedures.
Stylianopoulos et al. (2008), for instance, have combined their
numerical approach with the volume averaging method in order
to determine the permeability for their drag model. Nabovati
et al. (2009) made use of their numerical data to adjust the coef-
ficient values of the combined theoretical, numerical and empiri-
cal model of Gebart (1992). Tahir and Tafreshi (2009) used the
empirical permeability of Davies (1952) in their numerical simu-
lations in order to investigate the effect of fibre orientation on
permeability and Gostick et al. (2006) used the model of
Tomadakis and Robertson (2005) in their simulations. The latter
authors followed an analytical electrical conduction-based
method in order to predict the permeability of arrays of cylindri-
cal fibres.

Different categories of flow through uniform and straight
fibrous porous media have been considered in the literature
depending on fibre orientation, flow direction and application.
The categories to be considered in this study are the following:
(i) flow through arrays of unidirectional fibrous porous media,
referred to as a one-dimensional (1D) fibre arrangement and sub-
divided into (a) flow parallel to the axes of unidirectional fibres
and (b) flow perpendicular to the axes of unidirectional fibres, also
referred to as transverse flow; (ii) flow through fibres of which the
axes are randomly distributed in a plane, referred to as a two-
dimensional (2D) layered fibre arrangement and subdivided into
(a) in-plane flow, i.e. flow parallel to the plane in which the fibres
lie and (b) through plane flow, i.e. flow perpendicular to the plane
in which the fibres lie and lastly (iii) flow through randomly dis-
tributed fibres in space, referred to as a three-dimensional (3D)

fibre arrangement. Categories (i) and (ii) are anisotropic, although
the latter category can be regarded as transversely isotropic with
respect to the plane in which the fibres are randomly distributed
(Feser et al., 2006). Category (iii) is regarded as isotropic. The ear-
lier studies were mostly concerned with flow through 1D fibre
arrangements (e.g. Drummond and Tahir, 1984).

Jackson and James (1986), in their collective study, considered
categories (i) (a)&(b) and (iii), whereas Spielman and Goren
(1968) considered all the categories. Tamayol and Bahrami
(2011b), Stylianopoulos et al. (2008) and Tomadakis and
Robertson (2005) have also studied 1D, 2D and 3D fibre arrange-
ments. The latter authors in addition allowed for overlapping of
fibres.

2D layered fibrous media became of great importance in the fil-
tration industry in which the filter paper is made up of fibres that
have been deposited onto a flat surface so that the fibres’ axes are
randomly distributed onto planes parallel to the surface (Spielman
and Goren, 1968). As a result of this, more attention has been
drawn by authors towards studying the permeability of these
media (e.g. Gostick et al., 2006; Soltani et al., 2014; Tahir and
Tafreshi, 2009; Tamayol and Bahrami, 2011a; Tamayol and
Bahrami, 2011b, Tamayol et al., 2012).

Tamayol and Bahrami (2011b) have provided equations for pre-
dicting the permeability for all the categories (based on a scale
analysis technique), but introduced empirical coefficients in each
of them to obtain correlation with experimental data. The objective
of this study is to propose an adaptable analytical model based on
physical principles (i.e. excluding any empirical coefficients) in
order to predict the permeability of fibrous media in each of the
categories mentioned above as a function of solid volume fraction
and uniform fibre radius. The fibre geometry will be assumed rect-
angular in shape, similarly as was done by Zobel et al. (2007). The
novelty is that 2D models for through plane and in-plane flow will
be based on the existing fibre Representative Unit Cell (RUC) mod-
els for flow through 1D fibre arrangements. A 3D fibre model will
also be proposed and in addition to the 2D models adapted to
account for secondary effects such as developing flow that
becomes significant at low solid volume fractions and pore block-
age at high solid volume fractions. The effect of fibre orientation
will be investigated for the RUC models resembling 2D layered
fibrous media and the models furthermore adapted to incorporate
a unimodal equivalent radius in the case of bimodal fibrous media.

2. Flow through 1D fibre arrangements

The rectangular RUC model for fibrous porous media was ini-
tially introduced by Du Plessis (1991). The single rectangular fibre
in a rectangular unit cell, shown in Fig. 1, is representative of the
average pore-scale geometry of a 1D fibre arrangement. The solid
width is denoted by d;, with L being the fibre length and d the cell
size.

The RUC modelling approach differs from the unit cell approach
(of e.g. Tamayol and Bahrami, 2011b) in which the unit cell is
repeated throughout the porous medium in order to periodically
construct the medium. The RUC model is not a building block,
but rather the smallest rectangular unit cell in which the average
geometrical properties of a Representative Elementary Volume
(REV) can be embedded to be representative of the actual pore-
scale geometry (Du Plessis and Masliyah, 1988). The total solid
and fluid volumes are denoted by U, and Uy, respectively and
U, = d°L denotes the total volume of the RUC. The porosity is
therefore defined as
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