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H I G H L I G H T S

� Thermal-mechanical device which can be used to investigate any state equation.
� Chaotic behavior obtained through harmonic variation of the first Lyapunov value.
� Estimation of an arbitrary number of virial coefficients from the chaotic data.
� Pressure errors of several state equations expanded in terms of virial coefficients.
� Validation of the model with another route to chaos and the fugacity coefficient.
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a b s t r a c t

This paper investigates several cubic and non-cubic state equations of real gases at high pressures by
using the virial coefficients estimated from chaotic oscillations with a mechanical-thermal device. The
mechanical part is formed by a cylinder with a piston whose motion is limited by means of a nonlinear
spring, a damper and a nonlinear control force to decouple the mechanical and thermal subsystems. To
maintain the gas temperature approximately constant, a linear PI controller and a nonlinear control law
which manipulates the flow rate of two heating coils inside the cylinder are added. The stability of the
mechanical subsystem is analyzed through the first Lyapunov value, whose harmonic variation leads to
chaotic behavior with great pressures and an almost constant temperature. The chaotic simulations for
nonpolar gases are treated like experimental data to obtain an arbitrary number of virial coefficients
which reproduce the state equation in a prescribed pressure range. The validity of the proposed device
has been corroborated by using another alternative route to chaos and calculating the fugacity coeffi-
cient. The analytical calculations are in good agreement with the numerical simulations.

& 2016 Elsevier Ltd. All rights reserved.

1. Introduction

In the analysis and design of chemical processes, the pressure
of a real gas can be described as the sum of the pressure of an ideal
one plus a series expansion in terms of densities or specific vo-
lumes. The coefficients of such expansion are known as virial
coefficients, which only depend on the gas temperature and the
potential interaction energy between the molecules (Prausnitz
et al., 2000; Goodwin et al., 2010). For most fluids, only the first
and second virial coefficients are experimentally known (Dymond
and Smith, 1980; Dymond et al., 2002).

A state equation based on the virial expansion has been applied

at relatively low pressures (Mason and Spurling, 1968; Annamalai
and Puri, 2002), for which the two first coefficients provide the
required precision for the applications. On the other hand, one of
the advantages of the virial expansion is that it can be easily ob-
tained for a gaseous mixture through simple combining rules from
the virial coefficients of each of the gases present in the mixture
(Prausnitz et al., 2000; Poling et al., 2001).

In this work we analyze the behavior and the precision of
several cubic and non-cubic state equations when these equations
are expanded in terms of virial coefficients. Reviews of such
equations with and without translate volume can be found in
Poling et al. (2001), Abbot (1979), Tsonopoulos and Heidman
(1985), Wei and Sadus (2000) and Valderrama (2003) showing
their advantages and disadvantages. The considered cubic equa-
tions in this paper are: i) Redlich-Wong (RK) (Redlich and Kwong,
1948), ii) Soave_Redlich-Kwong (SRK) (Soave, 1972), iii) Peng-Ro-
binson (PR) (Peng and Robinson, 1976), iv) Peng-Robinson with
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translate volume (Tassios, 1993) and v) Van der Waals with
translate volume (VDWt) (Tassios, 1993; Soave, 1984). The con-
sidered non-cubic equations are: vi) Beattie-Bridgeman (BB) state
equation (Beattie and Bridgeman, 1927; Su and Chang, 1946;
Hougen et al., 1954) and vii) Empirical state equation of high
precision (HP) (Goodwin et al., 2010; Span, 2000; Gmehling et al.,
2012). All the previous state equations are analyzed by using
methane, nitrogen, oxygen and argon.

On the other hand, the device considered in this paper is a
mechanical-thermal system formed by an adiabatic cylinder en-
closing a real gas and a mobile piston moving along the cylinder
axis. The piston is anchored to the cylinder through a nonlinear
spring and a viscous damper. The thermal subsystem is formed by
two heating coils inside the cylinder with the purpose of trans-
ferring heat to the gas. An external control force acts on the piston,
thus balancing all the forces to maintain the piston motion within
the cylinder limits as well for decoupling the mechanical and
thermal subsystems. Two additional control devices are applied to
the thermal subsystem: one is a linear PI controller and the other
is a nonlinear control law for the heat supply by the helical coils by
manipulating their flow rate. The purpose of these control devices
is to maintain the gas temperature approximately constant (Al-
bertos and Sala, 2004; Pérez-Molina et al., 2016).

The parameter values and the control laws have been chosen to
obtain three equilibrium points. One of them is always a saddle
and the other two are weak focuses, whose stability is analyzed by
calculating the sign of the first Lyapunov value (Guckenheimer and

Holmes, 1983; Wiggins, 2000; Pérez-Polo and Pérez-Molina, 2014).
With the harmonic variation of the first Lyapunov value between
negative values (stable weak focus) and positive values (unstable
weak focus) the piston position jumps from one weak focus to the
other one, thus providing a route to chaotic oscillations. Further-
more, the chaotic behavior is characterized by a great excursion in
the pressure values, whereas the gas temperature remains ap-
proximately constant because of the control system.

The chaotic behavior is exploited to obtain a dense set of si-
mulation data which allow estimating the virial coefficients. In
order to assure the presence of chaos, the sensitive dependence,
all the Lyapunov exponents and the spectral power density have
been calculated, thus corroborating also the accuracy of the si-
mulation results (Guckenheimer and Holmes, 1983; Wiggins,
2000; Lichtenberg and Lieberman, 1992). By using polynomial
least square adjustment, the pressures, temperatures and specific
volumes of the gas, a desired number of virial coefficients are
obtained for each state equation.

The pressure errors between the virial approximation and the
exact equation have been compared, which has allowed estimat-
ing an admissible range of pressures for each state equation taking
the one of high precision (HP) as a reference. It should be em-
phasized that the methodology presented in this work admits the
use of other state equations, such as the one of reference (Val-
derrama, 1990). Finally, a discussion regarding the applicability of
the proposed model is presented taking into account another
route to chaos and the fugacity coefficient of the methane.
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Fig. 1. Layout of the mobile piston inside a cylinder with nonlinear spring, damper, heating coils (C, C1), loop 1 with a PI controller, nonlinear control loop 2 and control force
F′(t). The parameter values are: L¼1 m, dc¼0.1 m, S¼7.8540.10�3 m2, d1¼0.1 m, c¼0.02 m, d¼0.98 m, Vse¼5.6341.10�3 m3, Ks¼7.5020.108 J/m3,
α¼9.7262.10�11 m3 mole K/J2, β¼1.3333.10�10 mol m3/J s, Kp¼1.8268.10�9 m3/s K, fc¼0.001, m¼1.1939 kg, K1¼311.64 N/m, K2¼449.84 N/m3, K¼680.14 N/m2,
P1s¼5287.7 N/m2, b¼1 N m/s and Qs¼6734.6 J/s. TT, FT and PT denote the temperature, flow and pressure transmitters respectively, whereas TIC is an indicator PI controller.
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