Accepted Manuscript

Laminar natural convection characteristics in an enclosure with heated hexagonal block for non-Newtonian power law fluids

Krunal M. Gangawane, B. Manikandan

PII: S1004-9541(16)30448-7

DOI: doi: 10.1016/j.cjche.2016.08.028

Reference: CJCHE 670

To appear in:

Received date: 16 May 2016 Revised date: 20 August 2016 Accepted date: 25 August 2016

Please cite this article as: Krunal M. Gangawane, B. Manikandan, Laminar natural convection characteristics in an enclosure with heated hexagonal block for non-Newtonian power law fluids, (2016), doi: 10.1016/j.cjche.2016.08.028

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

ACCEPTED MANUSCRIPT

Laminar natural convection characteristics in an enclosure with heated

hexagonal block for non-Newtonian power law fluids

Krunal M Gangawane*, B. Manikandan,

Department of Chemical Engineering, College of Engineering Studies, University of Petroleum

and Energy Studies, Dehradun-248007, Uttrakhand, India

ABSTARCT

This work illustrates the steady state, two dimensional natural convective flow and heat transfer

features in square enclosure containing heated hexagonal block maintained either at constant

wall temperature (CWT) or uniform heat flux (UHF) thermal conditions. Governing equations

(mass, momentum and energy) are solved by using finite volume method (FVM) with 3rd order

accurate QUICK discretization scheme and SIMPLE algorithm for range of field pertinent

parameters such as, Grashof number $(10^3 < Gr < 10^6)$, Prandtl number (1 < Pr < 100) and power law

index $(0.5 \le n \le 1.5)$. The analysis of momentum and heat transfer characteristics are delineated by

evolution of streamlines, isotherms, variation of average Nusselt number value and Colburn

factor for natural convection (j_{nH}) . A remarkable change is observed on fluid flow and thermal

distribution pattern in cavity for both thermal conditions. Nusselt number shows linear variation

with Grashof and Prandtl numbers; while rate of heat transfer by convection decreases for power

law index value. Higher heat transfer rate can be achieved by using uniform heat flux condition.

A Nusselt number correlation is developed for possible utilization in engineering/scientific

design purpose.

Keywords: Square cavity; Heated block; Grashof number; Natural convection; Power law index

*Author to whom correspondence may be addressed: Tel.: +91 9760522280,

Email address: krunalgangawane@gmail.com; kmgangawane@ddn.upes.ac.in (Krunal M.

Gangawane)

1

Download English Version:

https://daneshyari.com/en/article/4764054

Download Persian Version:

https://daneshyari.com/article/4764054

<u>Daneshyari.com</u>