Accepted Manuscript

Separation Process of Butanol-butyl Acetate-methyl Isobutyl Ketone System by the Analysis to Residual Curve and the Double Effect Pressure-swing Distillation

Chunli Li, Yuanyuan Song, Jing Fang, Yang Liu, Weiyi Su, Yuqi Hu

PII: S1004-9541(16)30120-3

DOI: doi: 10.1016/j.cjche.2016.08.011

Reference: CJCHE 648

To appear in:

Received date: 27 February 2016 Revised date: 6 July 2016 Accepted date: 7 August 2016

Please cite this article as: Chunli Li, Yuanyuan Song, Jing Fang, Yang Liu, Weiyi Su, Yuqi Hu, Separation Process of Butanol-butyl Acetate-methyl Isobutyl Ketone System by the Analysis to Residual Curve and the Double Effect Pressure-swing Distillation, (2016), doi: 10.1016/j.cjche.2016.08.011

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

CCEPTED MANU

Separation process of butanol-butyl acetate-

methyl isobutyl ketone system by the analysis to residual curve

and the double effect pressure-swing distillation[★]

Chunli Li*, Yuanyuan Song, Jing Fang, Yang Liu, Weiyi Su, Yuqi Hu

School of Chemical Engineering and Technology, Hebei University of Technology,

Tianjin 300130, China¹

Abstract The separation of ternary mixture of butanol, butyl acetate, and methyl isobutyl ketone (MIBK) was

initially analyzed by the residual curve. In this process, MIBK was chosen as the azeotropic agent during the first

step of separation. The optimum mass ratio of extra MIBK was 1.6 in the modified feed stream according to the

residual curve. Thus on this condition the top product was butanol-MIBK azeotrope while the bottom product was

butyl acetate in the preliminary separation of the mixture. Then the butanol and MIBK azeotrope was separated by

the double effect pressure-swing distillation with the low pressure column performing at 30 kPa and the

atmospheric pressure column at 101 kPa. The optimal operating conditions were then obtained by using Aspen

Plus to simulate and optimize the process. The results showed that the mass purities of butanol, butyl acetate, and

MIBK were all more than 99 % and reached the design requirements. Additionally, compared with the traditional

distillation with outside heating, the double effect pressure swing distillation saved the reboiler duty by 48.6% and

the condenser duty by 44.6%.

Keywords: Residual curve; Azeotropic distillation; Pressure-swing distillation; Aspen Plus

1 INTRODUCTION

As important industrial raw materials, butyl acetate, butanol, and methyl isobutyl ketone

Supported by National Natural Science Foundation of China(21306036)

The basic research program of Hebei province(16964502D).

* Corresponding author.

E-mail address: ctstlcl@163.com (C.Li).

Download English Version:

https://daneshyari.com/en/article/4764259

Download Persian Version:

https://daneshyari.com/article/4764259

<u>Daneshyari.com</u>