Accepted Manuscript

Increasing Isobutanol Yield by Double-gene Deletion of *PDC6* and *LPD1* in *Saccharomyces cerevisiae*

Aili Zhang, Yang Li, Yuhan Gao, Hongxing Jin

PII: S1004-9541(16)30259-2

DOI: doi: 10.1016/j.cjche.2016.04.004

Reference: CJCHE 506

To appear in:

Received date: 18 June 2015 Revised date: 27 January 2016 Accepted date: 24 February 2016

Please cite this article as: Aili Zhang, Yang Li, Yuhan Gao, Hongxing Jin, Increasing Isobutanol Yield by Double-gene Deletion of *PDC6* and *LPD1* in *Saccharomyces cerevisiae*, (2016), doi: 10.1016/j.cjche.2016.04.004

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

稿件编号: 2015-0298

中文题目: 通过双缺失 PDC6 基因和 LPD1 基因提高酿酒酵母异丁醇产量

Increasing Isobutanol Yield by Double-gene Deletion of PDC6 and LPD1 in Saccharomyces cerevisiae

Aili Zhang*, Yang Li, Yuhan Gao, Hongxing Jin

School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin, 300130, China

*Correspondence: zhangaili@tju.edu.cn

Tel: +86-22-60200444

Supported by the National Natural Science Foundation of China (No. 21206028), the Doctoral Fund of

Ministry of Education (No. 20121317120014), the Hebei Province Natural Science Fund (No. B2013202288),

the Hebei Provincial Office of Education Science and Technology Research Projects (No. q2012024), the

Hebei University of Technology Outstanding Youth Science and Technology Innovation Fund (No. 2012009)

and the Open Fund of Key Laboratory of System Bioengineering of Ministry of Education (Tianjin

University) (No. 20130315).

Abstracts

As a new biofuel, isobutanol has received more attentions in recent years. Because of its high tolerance to

higher alcohols, Saccharomyces cerevisiae has potential advantages as a platform microbe to produce

isobutanol. In this study, we investigated integration effects of enhancing valine biosynthesis by

overexpression of ILV2 and BAT2 with eliminating ethanol formation by deletion of PDC6 and decreasing

1

Download English Version:

https://daneshyari.com/en/article/4764316

Download Persian Version:

https://daneshyari.com/article/4764316

Daneshyari.com