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a b s t r a c t 

In most papers focused on the system order reduction models, describing processes of heating, evapora- 

tion and ignition in fuel sprays, it is assumed that all functions in corresponding differential equations 

are sufficiently smooth and consequently Lipschitzian. In many cases, however, these functions are non- 

Lipschitzian. This means that the conventional approach to system order reduction, based on the theory 

of integral manifolds, cannot be applied. It is pointed out that the order reduction of systems with non- 

Lipschitzian non-linearities can be performed, using a concept of positively invariant manifolds. This con- 

cept is discussed and applied to the analysis of spray ignition based on five ODEs (for gas temperature, 

fuel vapour and oxygen concentrations, and droplet temperatures and radii). This system is reduced to 

single ordinary differential equations for the gas temperature or fuel concentrations. It is shown that the 

equation for gas temperature predicts an increase in gas temperature up to its limiting value during finite 

time. The reaching of this temperature is accompanied by the complete depletion of either fuel vapour 

or oxygen depending on their initial concentrations, as follows from the analysis of the equations for gas 

temperature and fuel concentration. 

© 2017 The Combustion Institute. Published by Elsevier Inc. All rights reserved. 

1. Introduction 

The importance of modelling spray ignition and combustion 

processes in various engineering, including automotive, applica- 

tions is well recognised [1] . In most cases this modelling has been 

based on the application of computational fluid dynamics (CFD) 

codes [2] , although the limitations of this approach have been 

widely discussed in the literature [3,4] . An alternative approach to 

modelling these processes was based on the observation that they 

are characterised by large differences in the rates of change of vari- 

ables which allow one to apply asymptotic methods for their anal- 

ysis [5] . These methods cannot replace the conventional approach 

to the problem based on CFD modelling but can effectively com- 

plement it by highlighting the physical background of individual 

processes [5] . One of the most efficient methods for the analysis of 

these processes has been based on the theory of integral manifolds 

for singularly perturbed systems [6–9] . In the case of autonomous 

systems this theory is known as the theory of invariant manifolds 

and is focused on the following equations: 

˙ x = f (x, y, ε) 

ε ̇ y = g(x, y, ε) 

}
, (1) 
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where 0 < ε � 1, x ∈ R 

m , y ∈ R 

n , in R 

m + n = R 

m × R 

n . A surface 

y = ℵ (x, ε) is called a slow invariant manifold of system (1) if any 

trajectory x = x (t, ε) , y = y (t, ε) of system (1) that has at least one 

common point x = x 0 , y = y 0 with the surface y = ℵ (x, ε) , i.e. y 0 = 

ℵ (x 0 , ε) , lies entirely on this surface, i.e. y (t, ε) = ℵ (x (t, ε) , ε) . 

Finding this manifold is based on the requirement that functions 

f ( x , y , ε) and g ( x , y , ε) are sufficiently smooth and therefore satisfy 

the Lipschitzian condition [10] : 

‖ g(x 1 , y 1 ) − g(x 2 , y 2 ) ‖ ≤ L (‖ x 1 − x 2 ‖ + ‖ y 1 − y 2 ‖ ) , (2) 

where ( x 1 , y 1 ), ( x 2 , y 2 ) are arbitrary arguments from the domain 

and L > 0 . Note that the Lipschitzian condition is usually used in 

ODE theory to guarantee the uniqueness of the initial value prob- 

lem (e.g., [10] ). 

The application of this theory to the modelling of spray ignition 

and combustion processes is described in numerous papers includ- 

ing [5,11] . In these papers the analysis of both these processes is 

based on the same simple Arrhenius chemical model and these 

processes are indistinguishable from the point of view of mod- 

elling. The authors of [12] paid attention to the fact that in the 

model described in [5] , Condition (2) is not satisfied which brought 

the validity of the results presented in [5] into question. In [12] an 

alternative approach to the analysis of the problem described in 

[5] , using the new concept of positively (negatively) invariant man- 

ifolds, is performed. It is shown that a manifold similar to the one 
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Nomenclature 

a coefficient introduced in Eq. (16) (m 

−b ) 

a i ( i = 0, 1, 2) coefficients introduced in Eq. (16) 

(m 

−b K 

−i ) 

af , bx powers used in the definition of ˙ ω 

A pre-exponential factor (kmol 1 −(a f+ bx ) m 

3 −3(a f+ bx ) s −1 ) 

A , B parameters introduced in Eq. (5) 

b coefficient introduced in Eq. (17) 

b i ( i = 0, 1, 2) coefficients introduced in Eq. (17) 

(K 

−i ) 

c specific heat capacity (J kg −1 K 

−1 ) 

C molar concentration (kmol m 

−3 ) 

E activation energy (J kmol −1 ) 

g function introduced in Eq. (8) 

h convection heat transfer coefficient (W m 

−2 K 

−1 ) 

k 1 efficiency factor of absorption 

L specific heat of evaporation (J kg −1 ) 

L positive parameter introduced in Condition (2) 

m d droplet mass (kg) 

M molar mass (kg kmol −1 ) 

n d number of droplets per unit volume (m 

−3 ) 

Nu Nusselt number 

P i , P 23 ( i = 0, 1, 2, 3) dimensionless components in the RHS 

of Eqs. (18) –(22) 

q c ( q r ) convective (radiative) heat flux (W m 

−2 ) 

q r 3 

Q specific combustion energy (J kg −1 ) 

r dimensionless droplet radius 

R d droplet radius (m) 

R universal gas constant (J kmol −1 K 

−1 ) 

Sh Sherwood number 

t time (s) 

T temperature (K) 

T finite interval of time (s) 

V Lyapunov function 

x , y vectors in R 

m and R 

n spaces or scalars 

z ȳ − y 

Greek and miscellaneous symbols 

ℵ slow invariant manifold 

α parameter in the definition of f ( y ) 

β RT d 0 / E 

γ dimensionless parameter introduced in Eqs. (18) –

(22) 

εi ( i = 1, 2, 3, 4) dimensionless parameters introduced 

in Eqs. (18) –(22) 

ε small positive parameter 

η dimensionless fuel concentration 

θ dimensionless temperature 

ζ parameter introduced in Eqs. (12) and (15) 

λ thermal conductivity (W m 

−1 K 

−1 ) 

ν stoichiometric coefficient 

ξ dimensionless oxidiser concentration 

ρ density (kg m 

−3 ) 

σ Stefan–Boltzmann constant (W m 

−2 K 

−4 ) 

τ dimensionless time 

ϕ dimensionless volumetric phase content 

ω f small dimensionless parameter introduced in the 

definition of C ff
˙ ω chemical reaction rate (kmol s −1 ) 

ψ function introduced in Eq. (8) 

℘ parameter introduced in Eq. (3) 

Subscripts 

b boiling point 

c convection 

d droplet 

ext external (also superscript) 

f fuel 

g gas 

ox oxidiser 

p constant pressure 

r thermal radiation 

react reaction 

0 initial state 

inferred from the analysis of the Lipschitzian systems can be ob- 

tained for the singularly perturbed systems with non-Lipschitzian 

nonlinearities, if the five assumptions of the Tikhonov theorem are 

satisfied [12] (also see [3] ). This provided rigorous justification of 

the results earlier reported in [5] . 

As in [12] , the analysis of this paper will be focused on the 

investigation of positively invariant manifolds for non-Lipschitzian 

systems, describing the processes of spray ignition and combus- 

tion. In contrast to [12] the focus will be, not on the model origi- 

nally described in [5] , but on a more advanced model of these pro- 

cesses, taking into account the volumetric absorption of the ther- 

mal radiation in droplets, described in [14] . Our analysis will not 

be restricted to the case of small ε and will be based on the ap- 

plication of positively invariant manifolds and Lyapunov functions. 

The preliminary results of the analysis were presented in [13] . 

The underlying physical phenomenon related to the case when 

the Lipschitzian condition is not satisfied is described in Section 2 . 

A concept of positively invariant manifolds is discussed in detail in 

Section 3 . In the same section, the predictions of the model based 

on this manifold are compared with the rigorous numerical solu- 

tion to the system of ODEs using a relatively simple example. The 

spray ignition and combustion model, described in [14] , is briefly 

reviewed in Section 4 . A new approach to the reduction of this 

model, based on the analysis of a positively invariant manifold and 

the Lyapunov function, is described in Section 5 . The main results 

of the paper are summarised in Section 6 . 

2. Smoothness and finite time processes 

It is well known that a wide class of dynamic processes is de- 

scribed by ODE systems with sufficiently smooth functions. If these 

systems are asymptotically stable it is necessary to use an infinite 

time interval to attain a steady state. At the same time, some phys- 

ical processes are characterised by a finite period of existence. For 

example, the time taken for a droplet to evaporate is usually fi- 

nite. This means that it is necessary to use non-smooth ODEs to 

describe such processes. 

This can be illustrated by considering a physical process de- 

scribed by the scalar ODE: 

d y/d t = f (y ) , f (0) = 0 , y (0) = y 0 > 0 . 

Let us assume that after finite time T variable y vanishes, i.e. 

y (T ) = 0 . After the integration of this differential equation we ob- 

tain ∫ 0 

y 0 

dy 

f (y ) 
= T , y (T ) = 0 . 

For f (y ) = −y α the integral in the left hand side of this equation 

∫ 0 

y 0 

dy 

f (y ) 
= 

y 1 −α
0 

1 − α
= T , y (T ) = 0 
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