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a  b  s  t  r  a  c  t

Nonlinear  model  predictive  control  (NMPC)  is an  important  tool  for  the  real-time  optimization  of  batch
and  semi-batch  processes.  Direct  methods  are  often  the methods  of  choice  to  solve  the  corresponding
optimal  control  problems,  in particular  for large-scale  problems.  However,  the matrix  factorizations  asso-
ciated  with  large  prediction  horizons  can be  computationally  demanding.  In contrast,  indirect  methods
can  be  competitive  for smaller-scale  problems.  Furthermore,  the  interplay  between  states  and  co-states
in the  context  of  Pontryagin’s  Minimum  Principle  (PMP)  might  turn  out to  be  computationally  quite
efficient.

This work  proposes  to use  an indirect  solution  technique  in  the  context  of  shrinking-horizon  NMPC.  In
particular,  the technique  deals  with  path  constraints  via  indirect  adjoining,  which  allows  meeting  active
path  constraints  explicitly  at  each  iteration.  Uncertainties  are  handled  by  the  introduction  of time-varying
backoff  terms  for the path  constraints.  The  resulting  NMPC  algorithm  is applied  to  a two-phase  semi-batch
reactor  for the  hydroformylation  of  1-dodecene  in  the  presence  of uncertainty,  and  its  performance  is
compared  to  that  of  NMPC  that  uses  a direct  simultaneous  optimization  method.  The results  show  that  the
proposed  algorithm  (i)  can  enforce  feasible  operation  for  different  uncertainty  realizations  both  within
batch  or  from  batch  to batch,  and (ii) is  significantly  faster  than  direct  simultaneous  NMPC,  especially  at
the  beginning  of the  batch.  In addition,  a  modification  of the  PMP-based  NMPC  scheme  is  proposed  to
enforce  active  constraints  via  tracking.

©  2017  Elsevier  Ltd. All  rights  reserved.

1. Introduction

Batch and semi-batch processes have wide application in the
specialty industries for the production of low-volume, high-added-
value products. Typical examples are pharmaceuticals, polymers
and food. With increasing competition in industry and stricter
environmental regulations, the optimal operation of batch pro-
cesses plays an important role toward increased profitability. The
inherently transient behavior as well as the presence of strong
nonlinearities and of path and end-point constraints result in
challenging optimization problems. Moreover, the lack of accu-
rate models brings about considerable plant-model mismatch
(Terwiesch et al., 1994; Bonvin, 1998; Srinivasan et al., 2003b; Jung
et al., 2015). Hence, the open-loop implementation of off-line com-
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puted optimal control profiles may result in sub-optimal, or worse,
infeasible operation. In addition, the operating conditions might
change from batch to batch and cause unacceptable variations of
product quality. Consequently, the application of measurement-
based, optimizing feedback schemes is of great importance for
semi-batch processes (Eaton and Rawlings, 1990; Ruppen et al.,
1995; Ruppen et al., 1998; Bonvin et al., 2001; Bonvin et al., 2006;
Kadam et al., 2007; Welz et al., 2008; Mesbah et al., 2011)

Model predictive controllers (MPC) have been used extensively
in industry (García et al., 1989; Qin and Badgwell, 2003). On the
basis of a (most often linear) process model, these controllers pre-
dict the future behavior of the states and outputs. At each iteration,
the algorithm updates the initial conditions using measurements
and solves a dynamic optimization problem for some cost function
such as the minimization of a tracking stage cost or the maximiza-
tion of a final cost. Only the first part of the computed optimal
inputs is implemented, then the horizon is shifted by one sam-
pling time and the procedure is repeated iteratively. Since MPC is
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capable of addressing multivariable constrained nonlinear systems
and can use different types of models and performance criteria, it
possesses a suitable and flexible structure for real-time optimizing
control (Diehl et al., 2002; Adetola and Guay, 2010; De Souza et al.,
2010; Huang et al., 2010). A detailed discussion of and survey on
MPC can be found in (Morari and Lee, 1999).

Because of the strong nonlinear behavior of batch processes,
linear MPC  is often not the method of choice for batch and semi-
batch processes. Moreover, semi-batch processes usually require
strictly constrained operation since the ability to influence the per-
formance and feasibility of the process decreases with time (Bonvin,
1998). This motivates the use of shrinking-horizon nonlinear model
predictive controllers (NMPC), for which the optimization is per-
formed with respect to the full time horizon and includes both path
and terminal constraints (Nagy and Braatz, 2003; Nagy et al., 2007).

Several studies on the applicability of NMPC to batch processes
have been reported in the literature. Lakshmanan and Arkun (1999)
used linear parameter-varying models for the estimation and con-
trol of nonlinear batch processes. Seki et al. (2001) proposed an
NMPC structure for the industrial application on polymerization
reactors. Nagy and Braatz (2003) studied a robust NMPC scheme for
batch crystallization, whereby parametric uncertainties are taken
into account explicitly. Valappil and Georgakis (2002) suggested a
min-max NMPC scheme with successive linearization for the con-
trol of the end-point properties in batch reactors. Lucia et al. (2013)
suggested a multi-stage NMPC scheme to deal with uncertainties,
and a scenario-tree approach was used to optimize a semi-batch
polymerization reactor. Recently, Jang et al. (2016) proposed a
multi-stage NMPC scheme for semi-batch reactors using backoffs
on path constraints. Binette and Srinivasan (2016) compared the
performance of different tracking objectives for the NMPC of batch
processes without parameters adaptation.

Nonlinear dynamic optimization (or optimal control) is at the
core of NMPC and plays an important role in terms of implementa-
tion. The solution methods for dynamic optimization problems fall
into the category of direct and indirect methods (Srinivasan et al.,
2003b).

1.1. Direct methods

In direct sequential methods, the input vector is parameterized
using polynomial functions, the states are integrated from their cur-
rent values up to the final time, and the optimal input parameters
are determined by a NLP solver (Vassiliadis et al., 1994; Srinivasan
et al., 2003b). Since the states are not approximated, these methods
are called ‘feasible-path’ methods. The computational complexity
might turn out to be high, in particular for path-constrained prob-
lems, which is usually not acceptable for real-time algorithms.

In direct simultaneous methods (DSM), the optimal control
problem is transformed to a NLP upon discretizing both the inputs
and the states. Since the states are approximated instead of inte-
grated, these approaches are called ‘infeasible-path’ methods.
Direct simultaneous methods were reported to be effective for the
optimization of large NMPC problems (Cervantes and Biegler, 1998;
Biegler et al., 2002; Wächter and Biegler, 2006; Kameswaran and
Biegler, 2006; Biegler, 2007; Huang et al., 2009; Jang et al., 2016).
Zavala and Biegler (2009) introduced an ‘advanced-step’ DSM to
deal with the feedback delay associated with the time required
to compute the solution. Later, Huang et al. (2010) extended this
method for the combination of NMPC and moving horizon estima-
tion.

Another direct solution algorithm proposed for NMPC is the
direct multiple shooting approach, which represents a mid-way
between sequential and simultaneous algorithms. In this approach,
the time interval is divided into stages, and the initial conditions
of the stages are taken as decision variables for the optimization

problem. This procedure is also an ‘infeasible-path’ method but
the integration is as accurate as in sequential methods (Srinivasan
et al., 2003b). Direct multiple shooting has been used extensively
in NMPC problems (Keil, 1999; Bock et al., 2000; Diehl et al., 2002;
Diehl et al., 2006; Schäfer et al., 2007; Findeisen et al., 2007).
Mesbah et al. (2011) compared the performance of the DSM and
direct multiple shooting algorithms for the real-time control of a
fed-batch crystallizer.

1.2. Indirect methods

In indirect optimization methods, the optimization problem
is reformulated as the minimization of an Hamiltonian function
(Bryson, 1975). The reformulated problem is then solved to satisfy
the necessary conditions of optimality (NCO) using Pontryagin’s
Minimum Principle (PMP). Indirect methods have been used to
solve MPC  problems in the literature. Cannon et al. (2008) designed
a MPC  strategy for input-constrained linear systems, whereby the
inputs are represented in terms of co-states and the problem is
solved using active-set methods. It was  stated that the matrix fac-
torizations performed by general direct solvers can be efficiently
replaced by the computation of states and co-states using PMP.
This way, the complexity per iteration increases only linearly with
the length of the prediction horizon, which can be a computational
advantage for batch processes that typically have large prediction
horizons due to the shrinking-horizon approach. Kim and Rousseau
(2012) used PMP  for the optimal control of hybrid electric vehicles.
Ali and Wardi (2015) proposed a multiple shooting method based
on PMP, where the inputs can be expressed analytically in terms of
states and co-states. Recently, Zhang et al. (2017) applied PMP  in
the context of MPC  for a plug-in vehicle. In this method, the val-
ues of the co-states are determined by trial and error. For a more
detailed review of the solution algorithms for NMPC, the reader is
referred to (Cannon, 2004a,b).

However, until very recently (Aydin et al., 2017), there did not
exist a fast convergent method to solve path-constrained optimal
control problems using PMP  (Hartl et al., 1995; Chachuat, 2007).
Aydin et al. (2017) proposed an indirect, gradient-based dynamic
optimization algorithm for the control of non-affine constrained
semi-batch processes. The algorithm uses indirect adjoining to
deal with path constraints, which allows the explicit calculation
of inputs to meet the path constraints at each iteration step. The
performance of PMP-based and DSM-based algorithms was com-
pared on three different problems, with the indirect algorithm
being found computationally superior, especially with finer dis-
cretization levels. In this work, we apply the convergent PMP-based
algorithm proposed by Aydin et al. (2017) to the constrained NMPC
problem of batch processes with both mixed and pure-state path
constraints.

Furthermore, tracking the necessary conditions of optimality
(NCO tracking) has also been proposed as a real-time optimiza-
tion algorithm (Srinivasan and Bonvin, 2007). The optimal inputs
are first computed via off-line optimization of the nominal model.
The main assumption is that the solution structure (sequence and
types of arcs) does not change with uncertainty. Hence, instead of
performing explicit optimization at each NMPC iteration, the opti-
mal  solution structure computed off-line is tracked with the help
of feedback controllers (Srinivasan and Bonvin, 2007; Srinivasan
et al., 2008; Chachuat et al., 2009; Ebrahim et al., 2016).

The computational advantage of the PMP  formulation repre-
sents the main motivation for this study. We  propose to apply the
novel PMP-based solution algorithm of Aydin et al. (2017) to the
shrinking-horizon NMPC of nonlinear semi-batch processes in the
presence of nonlinear pure-state and mixed-state path constraints.
The effect of uncertainties is handled by the introduction of time-
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