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a  b  s  t  r  a  c  t

This paper  presents  a new  phase  stability  method  that  is  applicable  when  repeated  phase  behavior  cal-
culations  are  needed  as it is the  case  with  multiphase  fluid  flow  compositional  simulation  in  upstream
petroleum  engineering.  Two  discriminating  functions  act as  classifiers  in such  a  way  that  a  positive  value
of one  of  the  two  functions  determines  the  stability  state  of  the  mixture.  The  two  functions  are  gener-
ated  off  line,  prior  to  the  simulation,  and  their  expressions  are very  simple  so  that  they  can  be  evaluated
rapidly  in  a non-iterative  way  for every  discretization  block  and  at each  timestep  during  the  simulation.
The  CPU  time  required  for phase  stability  calculations  is dramatically  reduced  while  still  obtaining  cor-
rect classification  results  corresponding  to  the  global  minimum  of the  system  Gibbs  energy  function.  The
method  can  be applied  to  any  chemical  engineering  problem  where  the  class  of  several  objects  needs  to
be determined  repeatedly  and  quickly.

© 2017  Elsevier  Ltd.  All  rights  reserved.

1. Introduction

Upstream petroleum engineering focuses on modeling the flow
of hydrocarbons from the reservoir up to the sales point. These
models are used subsequently to design the production facilities
and select the operating conditions so as to maximize production
at minimum field development cost. As flow is considered both
within the reservoir, the production wells and the surface or seabed
manifolds such models incorporate fluid flow calculations in the
porous medium and in pipelines of various configurations (Floquet
et al., 2009). The solution of the continuity, momentum and energy
equations requires fluid properties such as density, compressibil-
ity, viscosity and enthalpy. However, reservoir fluids are complex
mixtures of thousands of components and they may  appear in
multiphase equilibrium thus rendering compositional fluid flow
simulation as a complex computational task.

Today, computers capabilities allow for the detailed numeri-
cal solution of the flow equations using very fine space grids and
time discretization. Current practice is to simulate various com-
plex production scenaria for which thermodynamic properties are
calculated by means of cubic EoS models (Michelsen and Mollerup,
2004). Despite the simplicity of those models, phase behavior calcu-
lations such as identification of phase stability, determination of the
phase split and calculation of the equilibrium phase properties, still
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consume a considerable part of the total CPU time due to the com-
plexity of the utilized algorithms and the need to repeat them for
each discretization block and timestep. This discourages operators
from employing thermodynamically advanced but mathematically
more complex EoS models which could capture more accurately
fluid thermodynamics. Nevertheless, the utilization of advanced
EoS models is a prerequisite when flow assurance issues are con-
sidered such as precipitation of asphaltenes, water chemistry, wax
and hydrate formation (Subramanian, 2016; Sloan, 1990).

To determine at each discretization block and at each timestep
whether the reservoir fluid appears in single phase or if two or
more phases coexist in equilibrium, a phase stability calculation
needs to be run (Michelsen, 1982a). If the fluid proves to be unstable
a phase split calculation (Michelsen, 1982b) follows to determine
the quantity and properties of the equilibrium phases. The ther-
modynamically rigorous approach to both problems involves the
minimization of the Gibbs energy function given each block’s
overall composition z, prevailing pressure p and temperature T.
Although standalone phase split calculations are more complex
and difficult to converge than the phase stability ones, the latter
still consume a significant part of the total CPU time when flow
simulation is concerned due to several reasons. Firstly, stability
calculations are run always for each block and for all timesteps
whereas phase split is needed only when instability occurs. For
example, when dealing with undersaturated reservoirs phase split
calculations might be fully skipped throughout the simulation. Sec-
ondly, phase split calculations are usually initialized to the solution
of the same block at the previous timestep or a variant of that
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(e.g. Rasmussen et al., 2006), which in most cases guarantees very
fast convergence, whereas phase stability calculations are initial-
ized by correlations of limited accuracy (Whitson and Brule, 2000).
Additionally, when stability calculations in the vicinity of the sta-
bility test limit locus are considered, the number of iterations may
increase dramatically (Nichita et al., 2007). Moreover, to ensure
convergence to the global minimum of the system energy function
and avoid missing possible instability, the phase stability algorithm
needs to be sophisticated enough. Clearly, both reliability and speed
of the stability algorithm are issues of major importance in a sim-
ulation run.

Reliable phase stability methods address the lack of convexity of
the Gibbs energy function by focusing at its global minimum using
a wide variety of approaches such as homotopy continuation (Jalali
et al., 2008), interval Newton methods (Staudt et al., 2013), tunnel-
ing methods (Nichita et al., 2002) and simulated annealing (Pan and
Firoozabadi, 1998). Admittedly, all the above methods are compu-
tationally very expensive. Nevertheless, as opposed to standalone
calculations, alternative methods might be utilized when repeated
stability tests need to be run for potential phases that can be
described by a fixed EoS model, as it is the case with compositional
reservoir models, pipeline flow and separation process simulations.
Such methods may  require some extra time prior to the simulation
in order to be setup but they perform significantly faster during the
simulation. For example, lumping the reservoir fluid components
to a smaller number of pseudo-components while preserving as
much as possible the main characteristics of the Gibbs energy sur-
face is a standard procedure (Whitson and Brule, 2000). Although
several attempts might be required to achieve the best possible
modification of the EoS model the reduced dimensionality of the
lumped model is expected to accelerate calculations. For the case
of cubic EoS models combined to the Van der Waals mixing rules,
reduction methods (Hendricks and Van Bergen, 1992; Firoozabadi
and Pan, 2002; Gaganis, 2013) take advantage of the limited intrin-
sic dimensionality of the fluid model to reduce the number of
variables involved by applying spectral analysis to the binary inter-
action coefficients matrix. Several soft computing approaches have
also been presented as alternatives to the conventional thermo-
dynamically rigorous ones among which on-the-fly tabulation of
phase behavior results so as to be used during the flow simula-
tion (Zaydullin et al., 2014), table interpolation techniques to map
the natural flow variables such as density and energy directly to
pressure and temperature (Brown et al., 2016) and utilization of
continuous interpolation tools such as neural networks (Schimtz
et al., 2006) are the most pronounced ones.

In a recent work Gaganis and Varotsis (2014) introduced the use
of classification models from the machine learning field to gener-
ate explicit, non-iterative solutions of the phase stability problem.
The idea lies in developing a discriminating function d ( x),  where
x = [z,  p, T]T , which exhibits positive value for any stable mixture
and negative value for any unstable one, the same way  the clas-
sic minimum tangent plane distance criterion does. Once such a
function becomes available, each discretization block during a sim-
ulation run can be classified as stable or unstable significantly faster
than running iterative calculations simply by evaluating the sign of
d ( x). To honor continuity d ( x) needs to exhibit a zero value for
every point x lying on the boundary that separates stable from
unstable points, hence the d ( x) = 0 contour matches exactly the
phase envelope. Therefore, the complexity of the d ( x) expression,
hence the CPU time needed to evaluate it, depends on the shape of
the phase boundary which in turn is a function of the fluid’s number
of components and the operating range of x.

In this work a new classification technique is presented which
relaxes the need of d ( x) to emulate exactly the phase boundary,
thus allowing for great simplification of the discriminating func-
tion expression and leading to rapid phase stability determination.

The classifier d ( x),  the sign of which provides correct answers for
both classes, is replaced by two discriminating functions dA ( x) and
dB ( x), each one providing accurate answers for one class solely. The
classifiers are defined by simple and very fast to evaluate expres-
sions and designed so that dA ( x) > 0 implies that mixture x is
stable and dB ( x) > 0 implies that it is unstable. The converse is
not necessarily true, therefore correct classifications can be guar-
anteed only when one of the two  classifiers exhibits a positive
value. To minimize ambiguity, that is the occurrence of points for
which both classifiers exhibit negative value, the loci of dA ( x) > 0
and dB ( x) > 0 need to cover as much as possible of the stable
and unstable regions respectively. This way, correct classification
results can be obtained rapidly for the vast majority of the dis-
cretization blocks during the simulation at the cost of the evaluation
of one of the two  simple classifiers solely. As it will be shown,
that cost is just a small fraction of the CPU time required by the
conventional iterative approach.

The paper is structured as follows: Section 2 discusses the
equivalence between the thermodynamically rigorous iterative
approach and the use of explicit discriminating functions in phase
stability calculations. Section 3 presents the properties that the
proposed classifiers need to exhibit and Section 4 sets up the math-
ematical program to generate them. Section 5 addresses several
computational issues. A set of examples demonstrates the effi-
ciency of the method in Section 6 followed by the conclusions.

2. Discriminating functions equivalence to the phase
stability problem

Currently, stability of a mixture of composition z at pressure
p and at temperature T is determined by means of Michelsen’s
criterion (1982a) according to which the mixture will split in two
or more phases only if

TPD (z, p, T, y) < 0 (1)

or

TPD (z, p, T, y) = 0, y /= z (2)

for some composition y an infinitesimal quantity of which forms
a second phase. The tangent plane distance is defined as the Gibbs
energy difference between the single phase and the two phase mix-
tures, i.e. TPD = gmix (z, y, p, T) − g (z,  p, T). Eq. (2) corresponds to
an incipient equilibrium second phase while a stable phase exhibits
TPD (z, p, T, y) > 0 for any composition y. Instead of searching
exhaustively the whole compositional space for compositions y
that might satisfy Eqs. (1) or (2) Michelsen suggested the utilization
of optimization to compute the minimizers

ymin = arg min︸  ︷︷  ︸
y

{
TPD (z, p, T, y)

}
(3)

and the evaluation of the sign of TPDmin at ymin. Nevertheless, the
stationary points of the significantly non-convex TPD surface can
only be found by means of CPU time expensive iterative methods
such as the Newton or the Successive Substitution ones. Moreover,
being trapped to a local minimum is always an issue thus introduc-
ing the need of global optimization methods or of repeated trials
using various initialization schemes (Muller and Marquardt, 1997).
Clearly, being able to compute TPDmin (z, p, T) rapidly (in fact its
sign is only required) by means of an explicit expression would be
highly beneficial.

From a different point of view, determining the stability state
of a mixture can be seen as a binary classification problem (Duda
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