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a  b  s  t  r  a  c  t

This  work  presents  a new  numerical  solution  approach  to  nonlinear  constrained  optimization  problems
based  on  a gradient  flow reformulation.  The  proposed  solution  schemes  use  self-tuning  penalty  param-
eters  where  the  updating  of  the  penalty  parameter  is directly  embedded  in the system  of ODEs  used  in
the reformulation,  and  its  growth  rate  is  linked  to the violation  of  the constraints  and  variable  bounds.
The  convergence  properties  of  these  schemes  are  analyzed,  and  it  is  shown  that  they  converge  to a  local
minimum  asymptotically.  Numerical  experiments  using  a set  of  test  problems,  ranging  from  a few  to  sev-
eral  hundred  variables,  show  that  the  proposed  schemes  are  robust  and  converge  to  feasible  points  and
local minima.  Moreover,  results  suggest  that  the  GF  formulations  were  able  to find  the  optimal  solution
to  problems  where  conventional  NLP  solvers  fail,  and  in  less  integration  steps  and  time  compared  to a
previously  reported  GF  formulation.

©  2017  Elsevier  Ltd. All  rights  reserved.

1. Introduction

Optimization problems arise in many areas of chemical engi-
neering practice, from component and systems design (Grossmann,
2012) to operation and control (Amrit et al., 2013). Due to an
increasing concern of legislators and the general public in envi-
ronmental sustainability, optimization has been recently used to
aid in the design of supply chains and products considering their
life cycle (Yue et al., 2013), and as a tool for the design of new
sustainable energy conversion systems (Baliban et al., 2013; Scott
et al., 2013). Applications encompass formulations ranging from
linear programming problems (LP) to mixed-integer non-linear
programming problems (MINLP) and dynamic optimization prob-
lems (optimal control problems, OCP). A common feature of many
of these classes of problems, is that at a certain point one or sev-
eral non-linear constrained programming problems (NLP) need to
be solved. The solution of large-scale NLP problems was  made
possible by breakthroughs in non-linear programming during the
previous decades. In particular, the development of modern barrier
methods (Byrd et al., 1999; Vanderbei and Shanno, 1999; Wächter
and Biegler, 2006), sequential quadratic programming (Gill et al.,
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2005) and reduced gradient methods (Drud, 1994), led to imple-
mentations (solvers) such as IPOPT (Wächter and Biegler, 2006),
SNOPT (Gill et al., 2005) and CONOPT (Drud, 1994) that can be used
in user-friendly modeling and optimization environments such as
GAMS (Bussieck and Meeraus, 2004), AMPL (Fourer et al., 2002) and
AIMMS  (Bisschop and Roelofs, 2006).

Most algorithms used to compute a local optimum of con-
strained NLP problems rely on Taylor series expansions truncated
after the linear or quadratic term; according to this, constraints are
linearized and large steps towards the local minimum are allowed.
For this reason, in highly nonlinear problems intermediate itera-
tions might prove infeasible and frequent failures to converge to
a local optimum may  arise. Alternatively to the Taylor expansion
based methods, gradient flow (GF) methods have been proposed
for the solution of unconstrained and constrained nonlinear pro-
gramming problems. In its most simple version, the solution of
an unconstrained problem minxf(x) can be obtained by solving the
following set of coupled ordinary differential equations (ODEs):

dx

dt
= −∇xf (x); x(0) = x0 (1)

where x ∈ R
n, f (x) : R

n �→ R
1. This approach creates a smooth tra-

jectory that might offer an advantage for highly nonlinear problems
compared with the conventional optimization techniques which
take finite steps along line-search directions. For the latter, finding
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a suitable step-size can be difficult when the optimization func-
tion is non-quadratic and has large third derivatives, resulting in a
slow progress towards the solution due to the smalls steps required
(Brown and Bartholomew-Biggs, 1989a).

Another interesting feature of GF methods is the possibility
of using state-of-the-art integration software to find the solution
of optimization problems. This approximation for the solution of
unconstrained problems can be traced to the work of Botsaris
(1978). In the following decades, efforts were made to reach a
competitive level in terms of computational time and iterations
compared to conventional methods, with a summary found in
Brown and Bartholomew-Biggs (1989a). The application of GF
methods was further extended by introducing new formulations
that were able to cope with constrained nonlinear problems (Brown
and Bartholomew-Biggs, 1989b; Evtushenko and Zhadan, 1994;
Smirnov, 1994; Orsi, 1999). The constraints of the NLP problem
(h(x)) are incorporated to the objective function (f(x)) with a penalty
scheme in order for GF methods to be employed, with one of the
major issues being the updating of the penalty parameters utilized.
For an optimization problem with equality constraints only, Tanabe
(1974) proposed the following Gradient Flow formulation:

dx

dt
= −Q (x)∇xf (x); x(0) = x0 (2)

Q (x) = [I − JT (x)(J(x)JT (x))
−1

J(x)]

where ∇xf(x) and J(x) represents the gradient of the objective func-
tion with respect to the optimization variables and the Jacobian
matrix, respectively. Eq. (2) is a direct generalization of the gradient
projection method proposed by Rosen (1961) to a differential form,
which is based on projecting the search direction given by ∇xf(x)
into the subspace tangent to the active constraints. The method pro-
posed by Tanabe (1974) was further modified by Yamashita (1980)
and Evtushenko and Zhadan (1994) to yield

dx

dt
= −sQ (x)∇xf (x) − J(x)(J(x)JT (x))

−1
h(x); x(0) = x0 (3)

with s a positive constant. Following the work of Evtushenko
and Zhadan (1994), Wang et al. (2003) proposed an approach to
include inequality constraints and bounds where a pseudo-inverse
of the square matrix J(x)JT(x) acts as a penalizer (Eq. (4)), with this
approach requiring a non-singular Jacobian:

dx

dt
= −[∇f (x) + JT (x)(�h(x) − (J(x)JT (x))

−1
J(x)∇f (x))]; x(0) = x0

(4)

In their work, they avoid the use of slacks to account for vari-
able bounds by using the state-space transformation technique
proposed by Evtushenko and Zhadan (1994), otherwise the use of
quadratic slacks would result in singular Jacobians. As proved by the
above mentioned authors, their GF formulations have the property
that once the equality constraints are satisfied, the trajectory of the
solution will stay on the manifold determined by the constraints.
However, as analyzed by Brown and Bartholomew-Biggs (1989b),
the ODE system that allows following a path with those charac-
teristics needs to be solved quite accurately. This and the fact that
inverses of large matrices need to be calculated, produce a heavy
numerical overhead. Moreover, in the formulations represented by
Eqs. (2)–(4), authors do not present an approach to select the values
of the parameters required in their formulations (such as � in Eq.
(4)). In practice, the value of these parameters need to be adjusted
to each problem. Finally, Schropp and Singer (2000) compare SQP
methods and GF methods for the solution of nonlinear problems
from a theoretical point of view and using two case studies. They
concluded that SQP methods are efficient tools whereas the ODE
approach may  be more reliable, with the ODE approach being more

efficient for problems with only a small number of highly nonlin-
ear constraints. Moreover, they propose an approach combining
differential and algebraic equations that, according to the authors,
combines efficiency and reliability.

In this work, a self-tuning penalty scheme is presented for the
solution of constrained NLPs. The approach does not require the
calculation of an inverse (or pseudo-inverse) of the Jacobian matrix,
and the penalty parameters updating is directly embedded into the
system of ODEs. The performance of the GF formulations presented
in this work are compared to the formulation presented by Wang
et al. (2003) and also against several state-of-the-art NLP solvers.

2. New formulations using the gradient flow approach for
solving NLP problems

2.1. Problem definition

The minimization of the following standard constrained NLP is
considered:

min
xs

f (xs)

subject to :

hs(xs) = 0

g(xs) ≤ 0

xL
s ≤ xs ≤ xU

s

(5)

where xs ∈ R
ns , f (xs) : R

ns �→ R
1, hs(xs) : R

ns �→ R
m1 and g(xs) :

R
ns �→ R

m2 . The subscript s stands for standard, as this problem
will be converted to a penalized version were the subscripts will
be dropped to simplify the notation. This problem is converted to
a penalty function minimization, using a quadratic penalty scheme
and standard transformations. Inequality constraints are converted
to equalities via the use of squared slack variables as follows. First,
inequality constraints are converted to equality constraints using
the following transformation:

g(xs) + w2 = 0 (6)

where

w ∈ R
m2

.
Variables bounds are transformed to equalities, by using the

following equations:

xs +
(

sU
)2 = xU

s (7)

xs −
(

sL
)2 = xL

s (8)

where sL, sU ∈ R
ns . The equality constraints defined by Eqs. (6)–(8)

and the original constraints, hs(x), will be appended in the vec-
tor h(x) : R

n �→ R
m with n = 3ns + m2, m = 2ns + m1 + m2 and x =

{xs, sU, sL, w}.  Using this new defined set of constraints and vari-
ables, the original problem posed in Eq. (5) can be redefined as the
following (higher dimensionality) optimization problem:

min
x

f (x) (9)

subject to :

h(x) = 0

with the Lagrangian of the problem defined by:

L(x, �) = f (x) + �T h(x) (10)
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