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a  b  s  t  r  a  c  t

Models  of cultures  of  microorganisms  are  widely  used  for analysis,  control  and  optimization  of  bioreactors
in  order  to  enhance  productivity  and  performance.  Typically,  model-based  optimization  approaches  may
have acceptable  convergence  rates  to a local  optimum,  but they  are  negatively  affected  by modeling
errors  when  extrapolating  to unknown  operating  conditions.  In  this  work,  a model-based  optimization
methodology  that  uses  experimental  feedback  is  applied  to a fed-batch  bioreactor.  Experimental  feedback
is used  to  solve  the  extrapolation  problem.  After  the model  has  been  (re)parameterized,  an  optimized
experiment  is  designed  to  maximize  the  performance  of  the bioprocess.  Data  gathered  in this  experiment
is  used  to  correct  the  model,  and  the  cycle  continues  until  no  further  improvement  is  found.  The method
is  tested  in  the  production  of baker’s  yeast  biomass.  Results  obtained  demonstrate  the  capability  of  the
proposed  approach  to  find  an  improved  feeding  profile  that  leads  to better  performance  with  minimum
experimental  effort.

© 2017  Elsevier  Ltd. All  rights  reserved.

1. Introduction

Drastically improving the productivity of a bioreactor has been
a major concern in the biotechnology industry since its very begin-
ning. Penicillin production optimization is a well-known example
(Shuler and Kargi, 2002): despite penicillin was discovered in 1928,
it was not until the process was optimized two decades later which
made the drug commercially available, thus changing the life of
millions of people. Another representative example, even older, is
the production of baker’s yeast. In the beginning of the twentieth
century, yeast producers started to notice that under low carbo-
hydrates concentration (and with sufficient aeration), the biomass
yield increases. This led to the development of the Zulauf-Verfahren
or fed-batch process (Jorgensen, 1948; Rose and Harrison, 2012).
With today’s recombinant DNA techniques using Pichia Pastoris (a
species of methylotrophic yeast) for protein production, biomass
productivity is of paramount importance due its direct correlation
with protein expression.

Nowadays, the biotechnological industry and the academic sec-
tor have created an amazing amount of knowledge, merging topics
of different areas, from biochemistry to chemical engineering.
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Product and process efficiency are mandatory to survive in a highly
competitive and innovative industry (Pisano, 1997). Nevertheless,
there is still plenty of room for improvement since process system
engineering (PSE) tools are yet not fully embraced in the biotechno-
logical sector, where top-notch techniques coexist with outdated
industrial practices (Gernaey, 2015). Some initiatives like the FDA’s
Quality by Design (QbD) (FDA, 2006) aim to address this issue, in
order to increase the industry output, in a world that demands more
and more food and medicine (Tilman et al., 2002; OECD Indicators,
2015). According to QbD, the use of advanced tools such as mathe-
matical modeling is very useful to develop efficient, safe and clean
processes. However, some difficulties prevent this approach to be
widely used. First, it requires a body of specific knowledge about
the biochemical process in order to obtain a model. While there is
an enormous bibliography related to bioprocess models and how to
develop them, important factors in industrial practice such as unex-
pected day-to-day contingencies or short development times drive
toward simpler approaches, such as trial and error methods (Royle
et al., 2013). Besides that, first-principles mathematical models
may  accurately predict the process response only under conditions
close to those used to fit them, but usually fail when extrapolating
away to more distant conditions. This may  lead the bioreactor to be
operated in suboptimal conditions or, in even worse, to unsafe or
unprofitable operation (Mandur and Budman, 2015). This is espe-
cially true for novel bioprocesses, due to their complex dynamic
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Nomenclature

Process variables
F Inflow rate, [l/h]
Glc Glucose concentration, [g/l]
Glcin Glucose concentration in the feed, [g/l]
rs Glucose supply rate, [h−1]
rd Glucose demand rate, [h−1]
t Time [h]
tf Final time or duration of the experiment, [h]
u Process parameter vector (or policy vector)
ũ Process parameter distribution vector
V Liquid volume, [l]
X Biomass concentration, [g/l]
Y Glucose-to-biomass yield, [g/g]
y Vector of model predictions
� Model parameter vector
�̃ Model parameter distribution vector
� Growth rate, [g/l h]

Optimization problem variables
a Relative price of glucose
Er Error function
J  Performance index
JI Objective function for the information gain problem
Q Sensitivity matrix
Sij Sensitivity index of the ith element at the jth time
ts Sampling schedule vector
Vij Conditional variance of the ith element at the jth

time
Vj Total variance at the jth time
$Glc Price of glucose, [$/g]
$x Price of biomass, [$/g]

Sub-indices
E Ethanol oxidation mode
end Final element of the vector
f Fermentative mode
max  Maximum
min  Minimum
r Respiratory mode
o Initial element of the vector

Hyper parameters
m Experiments per iteration counter
mMAX Maximum number of experiments per iteration
n Iteration counter
sf Shrinking factor
ε Stopping criterion

behavior and the uncertainty regarding the best handles to achieve
optimal operation (Kiparissides et al., 2011).

In order to address above drawbacks due to imperfect models,
some approaches have been proposed. The modeling for opti-
mization approach (Bonvin et al., 2016) combines mathematical
modeling with experimental feedback with the main objective of
improving the process performance. This goal is sensibly differ-
ent from the modeling for description approach, where detailed
mathematical models are created to describe data gathered in the
experiments, without any special concern for process optimization.
When the modeling goal is iterative optimization, models do not
need to be excessively detailed (which relieve the burden of para-
metric precision in the modeling stage), but they have to capture
the tendency of the process, i.e. how the process reacts to changes

in its controlled inputs. The use of experimental feedback allows
iteratively updating model parameters based on data gathered in
designed experiments where information content is mainly related
to predicting optimal operating conditions.

A benchmark problem in the biotechnology industry is the
production of biomass. Microorganisms are used as a catalyst in
bioreactors in order to obtain a wide range of high-value prod-
ucts (food and beverage, complex proteins, enzymes, etc) which are
directly correlated to biomass production. While biomass usually
grows in the bioreactor, an initial seed is needed to start the pro-
cess. Thus, biotechnological industries have replicating or “seed”
reactors which operate in optimal conditions to ensure the initial
amount of biomass (which may  be different to conditions needed to
produce the final product at the industrial scale). This is the case of
baker’s yeast (Saccharomyces cerevisiae).  It is one of the most used
microorganisms since it can be genetically engineered to produce
the desired metabolites (Randez-Gil et al., 1999; Nielsen, 2013). It
is worth noting that Baker’s yeast uptakes nutrients through dif-
ferent metabolic pathways depending on the operating conditions
in the bioreactor. It is a facultative microorganism, which means
that it could grow under aerobic (respiration) or anaerobic (fer-
mentation) conditions (Van Dijken and Scheffers, 1986; Rodrigues
et al., 2006). However, in the presence of a high concentration of
carbohydrates, the anaerobic pathway prevails even with sufficient
aeration. This operating mode is not optimal for biomass produc-
tion, since the yield of this metabolic pathway is lower than the
one for the aerobic pathway. Thus, it is desirable that the reactor
operates maintaining the carbohydrate concentration low enough
to favor respiration, but with a high carbohydrate feed to favor
biomass production (measured as mass per unit of time). The fed-
batch operation favors this, but the carbohydrates feeding profiles
must be optimized to achieve high productivity conditions. Since
each yeast strain presents its own kinetic behavior, the optimal
profile will vary among strains and cannot be duplicated directly
from similar processes. Accordingly, optimization methods must be
applied in the development stage to pinpoint optimal conditions for
biomass production and protein expression.

In this work, a modeling for optimization methodology is
applied to a bench scale bioreactor used to produce baker’s yeast
biomass from glucose. In Section 2, the problem is presented and
the experimental set up for the bench scale bioreactor is described.
In Section 3, a mathematical model is proposed and analyzed. In
Section 4, the model-based optimization approach used to find the
optimal experimental conditions is briefly explained. The results
presented in Section 5 demonstrate how model-based optimiza-
tion methods combined with experimental feedback are very useful
to increasingly improve biomass production using a simple model.
Section 6 ends the paper with conclusions and ideas for further
research.

2. Materials and methods

2.1. Experimental setup and process description

The experiments were performed in a BioFlo 110 Benchtop
Fermenter

®
(New Brunswick Scientific). The reactor was charged

initially with a nutrient medium and was then inoculated with
baker’s yeast at the beginning of the experiment. After an initial lag
phase operating in batch mode, the fed-batch mode was started,
where a solution of glucose was used as the carbon source for the
growth of the microorganism. After the fed-batch mode, the reac-
tor is shortly operated in a second batch mode, in order to consume
any glucose left in solution. Samples were taken several times along
the experiments (in order to obtain the model parameters off-line).
The performance of the process was measured using the following
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